Central sidonicity for compact Lie groups
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 2, page 547-564
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHare, Kathryn E.. "Central sidonicity for compact Lie groups." Annales de l'institut Fourier 45.2 (1995): 547-564. <http://eudml.org/doc/75128>.
@article{Hare1995,
abstract = {It is known that the dual of a compact, connected, non-abelian group may contain no infinite central Sidon sets, but always does contain infinite central $p$-Sidon sets for $p>1.$ We prove, by an essentially constructive method, that the latter assertion is also true for every infinite subset of the dual. In addition, we investigate the relationship between weighted central Sidonicity for a compact Lie group and Sidonicity for its torus.},
author = {Hare, Kathryn E.},
journal = {Annales de l'institut Fourier},
keywords = {compact connected non-Abelian groups; central Sidon sets; central - Sidon sets; dual groups; weighted central Sidonicity; compact Lie groups},
language = {eng},
number = {2},
pages = {547-564},
publisher = {Association des Annales de l'Institut Fourier},
title = {Central sidonicity for compact Lie groups},
url = {http://eudml.org/doc/75128},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Hare, Kathryn E.
TI - Central sidonicity for compact Lie groups
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 2
SP - 547
EP - 564
AB - It is known that the dual of a compact, connected, non-abelian group may contain no infinite central Sidon sets, but always does contain infinite central $p$-Sidon sets for $p>1.$ We prove, by an essentially constructive method, that the latter assertion is also true for every infinite subset of the dual. In addition, we investigate the relationship between weighted central Sidonicity for a compact Lie group and Sidonicity for its torus.
LA - eng
KW - compact connected non-Abelian groups; central Sidon sets; central - Sidon sets; dual groups; weighted central Sidonicity; compact Lie groups
UR - http://eudml.org/doc/75128
ER -
References
top- [1] D.I. CARTWRIGHT and J.R. MCMULLEN, A structural criterion for the existence of infinite Sidon sets, Pacific J. Math., 96 (1981), 301-317. Zbl0445.43006MR83c:43009
- [2] R. COIFMAN and G. WEISS, Central multiplier theorems for compact Lie groups, Bull. Amer. Math. Soc., 80 (1974), 124-126. Zbl0276.43009MR48 #9271
- [3] A.H. DOOLEY, Central lacunary sets for Lie groups, J. Aust. Math. Soc., 45 (1988), 30-45. Zbl0689.43003MR89j:43007
- [4] P. GALLAGHER, Zeroes of group characters, Math. Z., 87 (1965), 363-364. Zbl0128.25602MR31 #276
- [5] K. HARE and D. WILSON, Weighted p-Sidon sets, J. Aust. Math. Soc., to appear. Zbl0874.43005
- [6] E. HEWITT and K. ROSS, Abstract harmonic analysis II, Springer-Verlag, New York, 1970. Zbl0213.40103
- [7] J.E. HUMPHREYS, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972. Zbl0254.17004MR48 #2197
- [8] J. LOPEZ and K. ROSS, Sidon sets, Lecture Notes Pure Appl. Math., No. 13, Marcel Dekker, New York, 1975. Zbl0351.43008MR55 #13173
- [9] W.A. PARKER, Central Sidon and central Λ(p) sets, J. Aust. Math. Soc., 14 (1972), 62-74. Zbl0237.43004MR47 #9178
- [10] J.F. PRICE, Lie groups and compact groups, London Math. Soc. Lecture Note Series No.25, Cambridge Univ. Press, Cambridge, 1977. Zbl0348.22001MR56 #8743
- [11] D.L. RAGOZIN, Central measures on compact simple Lie groups, J. Func. Anal., 10 (1972), 212-229. Zbl0286.43002MR49 #5715
- [12] D. RIDER, Central lacunary sets, Monatsh. Math., 76 (1972), 328-338. Zbl0258.43008MR51 #3801
- [13] R. STANTON and P. TOMAS, Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math., 100 (1978), 477-493. Zbl0421.43009MR58 #29855
- [14] V.S. VARADARAJAN, Lie groups, Lie algebras and their representations, Springer-Verlag, New York, 1984. Zbl0955.22500
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.