Equidimensional actions of algebraic tori
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 3, page 681-705
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNakajima, Haruhisa. "Equidimensional actions of algebraic tori." Annales de l'institut Fourier 45.3 (1995): 681-705. <http://eudml.org/doc/75134>.
@article{Nakajima1995,
abstract = {Let $X$ be an affine conical factorial variety over an algebraically closed field of characteristic zero. We consider equidimensional and stable algebraic actions of an algebraic torus on $X$ compatible with the conical structure. We show that such actions are cofree and the nullcones of $X$ associated with them are complete intersections.},
author = {Nakajima, Haruhisa},
journal = {Annales de l'institut Fourier},
keywords = {factorial variety; algebraic actions of an algebraic torus; complete intersections; conical variety},
language = {eng},
number = {3},
pages = {681-705},
publisher = {Association des Annales de l'Institut Fourier},
title = {Equidimensional actions of algebraic tori},
url = {http://eudml.org/doc/75134},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Nakajima, Haruhisa
TI - Equidimensional actions of algebraic tori
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 681
EP - 705
AB - Let $X$ be an affine conical factorial variety over an algebraically closed field of characteristic zero. We consider equidimensional and stable algebraic actions of an algebraic torus on $X$ compatible with the conical structure. We show that such actions are cofree and the nullcones of $X$ associated with them are complete intersections.
LA - eng
KW - factorial variety; algebraic actions of an algebraic torus; complete intersections; conical variety
UR - http://eudml.org/doc/75134
ER -
References
top- [BK] W. BORHO, H. KRAFT, Über Bahenen und deren Deformationen bei linearen Aktionen reductiver Gruppen, Comment. Math. Helvetici, 54 (1979), 1-104. Zbl0395.14013MR82m:14027
- [CM] W. BRUNS, J. HERZOG, Cohen-Macaulay Rings, Cambridge Studies Advanced Math., 37, Cambridge, Cambridge Univ. 1993. Zbl0788.13005MR95h:13020
- [GM] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Aspecte der Mathematik, D1, Braunschweig-Wiesbaded, Vieweg, 1984. Zbl0569.14003MR86j:14006
- [H] W.H. HESSELINK, Desingularizations of varieties of nullforms, Invent. Math., 55 (1979), 141-163. Zbl0401.14006MR81b:14025
- [HR] M. HOCHSTER, J. ROBERTS, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., 13 (1974), 115-175. Zbl0289.14010MR50 #311
- [K] V.G. KAC, Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213. Zbl0431.17007MR81i:17005
- [L] D. LUNA, Slices étales, Bull. Soc. Math. France Mémoire, 33 (1973), 81-105. Zbl0286.14014MR49 #7269
- [LR] M. NAGATA, Local Rings, Interscience Tracts in Pure & Applied Math., 13, New York, Wiley, 1962. Zbl0123.03402
- [M] A.R. MAGID, Finite generation of class groups of rings of invariants, Proc. Amer. Math. Soc., 60 (1976), 45-48. Zbl0344.13004MR55 #340
- [N1] H. NAKAJIMA, Relative invariants of finite groups, J. Algebra, 79 (1982), 218-234. Zbl0499.20029MR84c:13006
- [N2] H. NAKAJIMA, Class groups of localities of rings of invariants of reductive algebraic groups, Math. Zeit., 182 (1983), 1-15. Zbl0488.13003MR84j:20043
- [N3] H. NAKAJIMA, Representations of a reductive algebraic group whose algebras of invariants are complete intersections, J. reine angew. Math., 367 (1986), 115-138. Zbl0575.20036MR87h:20069
- [N4] H. NAKAJIMA, Equidimensional toric extensions of symplectic groups, Proc. Japan Acad., 70 Ser. A (1994), 74-79. Zbl0819.20046MR95d:20074
- [N5] H. NAKAJIMA, Semisimple algebraic groups admitting equidimensional toric extensions, in preparation.
- [P1] V.L. POPOV, Representations with a free module of covariants, Func. Anal. Appl., 10 (1976), 242-244. Zbl0365.20053MR54 #5255
- [P2] V.L. POPOV, Modern developments in invariant theory, Proc. of International Congress of Mathematicians (Berkeley 1986) Vol. 1, 394-406, Providence, Amer. Math. Soc., 1987. Zbl0679.14024
- [P3] V.L. POPOV, Groups, Generators, Syzygies, and Orbits in Invariant Theory, Transl. Math. Monographs 100, Providence, Amer. Math. Soc., 1992. Zbl0754.13005MR93g:14054
- [S] G.W. SCHWARZ, Lifting smooth homotopies of orbit spaces, Inst. Hautes Etudes Sci. Publ. Math., 51 (1980), 37-136. Zbl0449.57009MR81h:57024
- [TE] G. KEMPF, F. KNUDSEN, D. MUMFORD, B. SAINT-DONAT, Toroidal Embeddings I, Lecture Notes in Math., 339, Berlin Heidelberg New York, Springer, 1973. Zbl0271.14017MR49 #299
- [W1] D. WEHLAU, A proof of the Popov conjecture for tori, Proc. of Amer. Math. Soc., 114 (1992), 839-845. Zbl0754.20013MR92f:14049
- [W2] D. WEHLAU, Equidimensional varieties and associated cones, J. Algebra, 159 (1993), 47-53. Zbl0808.14039MR94f:14046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.