Equidimensional actions of algebraic tori

Haruhisa Nakajima

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 3, page 681-705
  • ISSN: 0373-0956

Abstract

top
Let X be an affine conical factorial variety over an algebraically closed field of characteristic zero. We consider equidimensional and stable algebraic actions of an algebraic torus on X compatible with the conical structure. We show that such actions are cofree and the nullcones of X associated with them are complete intersections.

How to cite

top

Nakajima, Haruhisa. "Equidimensional actions of algebraic tori." Annales de l'institut Fourier 45.3 (1995): 681-705. <http://eudml.org/doc/75134>.

@article{Nakajima1995,
abstract = {Let $X$ be an affine conical factorial variety over an algebraically closed field of characteristic zero. We consider equidimensional and stable algebraic actions of an algebraic torus on $X$ compatible with the conical structure. We show that such actions are cofree and the nullcones of $X$ associated with them are complete intersections.},
author = {Nakajima, Haruhisa},
journal = {Annales de l'institut Fourier},
keywords = {factorial variety; algebraic actions of an algebraic torus; complete intersections; conical variety},
language = {eng},
number = {3},
pages = {681-705},
publisher = {Association des Annales de l'Institut Fourier},
title = {Equidimensional actions of algebraic tori},
url = {http://eudml.org/doc/75134},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Nakajima, Haruhisa
TI - Equidimensional actions of algebraic tori
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 681
EP - 705
AB - Let $X$ be an affine conical factorial variety over an algebraically closed field of characteristic zero. We consider equidimensional and stable algebraic actions of an algebraic torus on $X$ compatible with the conical structure. We show that such actions are cofree and the nullcones of $X$ associated with them are complete intersections.
LA - eng
KW - factorial variety; algebraic actions of an algebraic torus; complete intersections; conical variety
UR - http://eudml.org/doc/75134
ER -

References

top
  1. [BK] W. BORHO, H. KRAFT, Über Bahenen und deren Deformationen bei linearen Aktionen reductiver Gruppen, Comment. Math. Helvetici, 54 (1979), 1-104. Zbl0395.14013MR82m:14027
  2. [CM] W. BRUNS, J. HERZOG, Cohen-Macaulay Rings, Cambridge Studies Advanced Math., 37, Cambridge, Cambridge Univ. 1993. Zbl0788.13005MR95h:13020
  3. [GM] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Aspecte der Mathematik, D1, Braunschweig-Wiesbaded, Vieweg, 1984. Zbl0569.14003MR86j:14006
  4. [H] W.H. HESSELINK, Desingularizations of varieties of nullforms, Invent. Math., 55 (1979), 141-163. Zbl0401.14006MR81b:14025
  5. [HR] M. HOCHSTER, J. ROBERTS, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., 13 (1974), 115-175. Zbl0289.14010MR50 #311
  6. [K] V.G. KAC, Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213. Zbl0431.17007MR81i:17005
  7. [L] D. LUNA, Slices étales, Bull. Soc. Math. France Mémoire, 33 (1973), 81-105. Zbl0286.14014MR49 #7269
  8. [LR] M. NAGATA, Local Rings, Interscience Tracts in Pure & Applied Math., 13, New York, Wiley, 1962. Zbl0123.03402
  9. [M] A.R. MAGID, Finite generation of class groups of rings of invariants, Proc. Amer. Math. Soc., 60 (1976), 45-48. Zbl0344.13004MR55 #340
  10. [N1] H. NAKAJIMA, Relative invariants of finite groups, J. Algebra, 79 (1982), 218-234. Zbl0499.20029MR84c:13006
  11. [N2] H. NAKAJIMA, Class groups of localities of rings of invariants of reductive algebraic groups, Math. Zeit., 182 (1983), 1-15. Zbl0488.13003MR84j:20043
  12. [N3] H. NAKAJIMA, Representations of a reductive algebraic group whose algebras of invariants are complete intersections, J. reine angew. Math., 367 (1986), 115-138. Zbl0575.20036MR87h:20069
  13. [N4] H. NAKAJIMA, Equidimensional toric extensions of symplectic groups, Proc. Japan Acad., 70 Ser. A (1994), 74-79. Zbl0819.20046MR95d:20074
  14. [N5] H. NAKAJIMA, Semisimple algebraic groups admitting equidimensional toric extensions, in preparation. 
  15. [P1] V.L. POPOV, Representations with a free module of covariants, Func. Anal. Appl., 10 (1976), 242-244. Zbl0365.20053MR54 #5255
  16. [P2] V.L. POPOV, Modern developments in invariant theory, Proc. of International Congress of Mathematicians (Berkeley 1986) Vol. 1, 394-406, Providence, Amer. Math. Soc., 1987. Zbl0679.14024
  17. [P3] V.L. POPOV, Groups, Generators, Syzygies, and Orbits in Invariant Theory, Transl. Math. Monographs 100, Providence, Amer. Math. Soc., 1992. Zbl0754.13005MR93g:14054
  18. [S] G.W. SCHWARZ, Lifting smooth homotopies of orbit spaces, Inst. Hautes Etudes Sci. Publ. Math., 51 (1980), 37-136. Zbl0449.57009MR81h:57024
  19. [TE] G. KEMPF, F. KNUDSEN, D. MUMFORD, B. SAINT-DONAT, Toroidal Embeddings I, Lecture Notes in Math., 339, Berlin Heidelberg New York, Springer, 1973. Zbl0271.14017MR49 #299
  20. [W1] D. WEHLAU, A proof of the Popov conjecture for tori, Proc. of Amer. Math. Soc., 114 (1992), 839-845. Zbl0754.20013MR92f:14049
  21. [W2] D. WEHLAU, Equidimensional varieties and associated cones, J. Algebra, 159 (1993), 47-53. Zbl0808.14039MR94f:14046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.