Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen.

Walter Borho; Hanspeter Kraft

Commentarii mathematici Helvetici (1979)

  • Volume: 54, page 61-104
  • ISSN: 0010-2571; 1420-8946/e

How to cite

top

Borho, Walter, and Kraft, Hanspeter. "Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen.." Commentarii mathematici Helvetici 54 (1979): 61-104. <http://eudml.org/doc/139768>.

@article{Borho1979,
author = {Borho, Walter, Kraft, Hanspeter},
journal = {Commentarii mathematici Helvetici},
keywords = {Linear Representation; Reductive Group; Sheets; Multiplicity; Deformation of An Orbit; Normal Variety; Semisimple Lie Algebra},
pages = {61-104},
title = {Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen.},
url = {http://eudml.org/doc/139768},
volume = {54},
year = {1979},
}

TY - JOUR
AU - Borho, Walter
AU - Kraft, Hanspeter
TI - Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen.
JO - Commentarii mathematici Helvetici
PY - 1979
VL - 54
SP - 61
EP - 104
KW - Linear Representation; Reductive Group; Sheets; Multiplicity; Deformation of An Orbit; Normal Variety; Semisimple Lie Algebra
UR - http://eudml.org/doc/139768
ER -

Citations in EuDML Documents

top
  1. C. Procesi, H. Kraft, Classi coniugate in G l ( n , C )
  2. Hubert Rubenthaler, Paramétrisation d'orbites dans les nappes de Dixmier admissibles
  3. Haruhisa Nakajima, Equidimensional actions of algebraic tori
  4. James B. Carrell, Orbits of the Weyl group and a theorem of DeConcini and Procesi
  5. V. B. Mehta, Wilberd Van der Kallen, A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices
  6. Walter Borho, Recent advances in enveloping algebras of semi-simple Lie-algebras
  7. A. Joseph, Towards the Jantzen conjecture. III
  8. Michel Brion, Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple
  9. M. Brion, Représentations exceptionnelles des groupes semi-simples
  10. Walter Borho, Jean-Luc Brylinski, Differential operators on homogeneous spaces. II : relative enveloping algebras

NotesEmbed ?

top

You must be logged in to post comments.