Nekhoroshev type estimates for billiard ball maps

Todor Gramchev; Georgi Popov

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 3, page 859-895
  • ISSN: 0373-0956

Abstract

top
This paper is devoted to the effective stability estimates (of Nekhoroshev’s type) of the billiard flow for strictly convex bounded domains with analytic boundaries in any dimensions. The main result is that any billiard trajectory with initial data which are δ - close to the glancing manifold remains close to the glancing manifold in an exponentially large time interval with respect to 1 / δ . The proof is based on a normal form of the billiard ball map in Gevrey classes. More generally, we prove effective stability estimates for the billiard ball map associated with any pair of analytic glancing hypersurfaces with a compact glancing manifold.

How to cite

top

Gramchev, Todor, and Popov, Georgi. "Nekhoroshev type estimates for billiard ball maps." Annales de l'institut Fourier 45.3 (1995): 859-895. <http://eudml.org/doc/75141>.

@article{Gramchev1995,
abstract = {This paper is devoted to the effective stability estimates (of Nekhoroshev’s type) of the billiard flow for strictly convex bounded domains with analytic boundaries in any dimensions. The main result is that any billiard trajectory with initial data which are $\delta $ - close to the glancing manifold remains close to the glancing manifold in an exponentially large time interval with respect to $1/\delta $. The proof is based on a normal form of the billiard ball map in Gevrey classes. More generally, we prove effective stability estimates for the billiard ball map associated with any pair of analytic glancing hypersurfaces with a compact glancing manifold.},
author = {Gramchev, Todor, Popov, Georgi},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {859-895},
publisher = {Association des Annales de l'Institut Fourier},
title = {Nekhoroshev type estimates for billiard ball maps},
url = {http://eudml.org/doc/75141},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Gramchev, Todor
AU - Popov, Georgi
TI - Nekhoroshev type estimates for billiard ball maps
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 859
EP - 895
AB - This paper is devoted to the effective stability estimates (of Nekhoroshev’s type) of the billiard flow for strictly convex bounded domains with analytic boundaries in any dimensions. The main result is that any billiard trajectory with initial data which are $\delta $ - close to the glancing manifold remains close to the glancing manifold in an exponentially large time interval with respect to $1/\delta $. The proof is based on a normal form of the billiard ball map in Gevrey classes. More generally, we prove effective stability estimates for the billiard ball map associated with any pair of analytic glancing hypersurfaces with a compact glancing manifold.
LA - eng
UR - http://eudml.org/doc/75141
ER -

References

top
  1. [1] A. BAZZANI, S. MARMI, G. TURCHETTI, Nekhoroshev estimate for isochronous non resonant symplectic maps, Celestial Mech. and Dynamical Astronomy, 47 (1990), 333-359. Zbl0703.70031MR92b:58207
  2. [2] G. BENETTIN, L. GALGANI, A. GIORGILLI, A proof of Nekhoroshev's theorem for the stability times in nearly integrable hamiltonian systems, Celestial Mech., 37 (1985), 1-25. Zbl0602.58022MR87i:58051
  3. [3] G. BENETTIN, G. GALLAVOTTI, Stability of motions near resonances in quasi-integrable hamiltonian systems, J. Stat. Phys., 44 (1986), 293-338. Zbl0636.70018MR88h:58042
  4. [4] M. BERGER, Sur les caustiques de surfaces en dimension 3. C. R. Acad. Sci. Paris, Série I, 331 (1990), 333-336. Zbl0713.53002MR91h:58007
  5. [5] P. BOLLEY, J. CAMUS, G. MÉTIVIER, Régularité Gevrey et itérés pour une classe d'opérateurs hypoelliptiques, Rend. Sem. Mat. Univ. Polit. Torino, 41 (1983), 51-74. Zbl0542.35022MR85h:35058
  6. [6] L. BOUTET de MONVEL, P. KREE, Pseudodifferential operators and Gevrey classes, Ann. Inst. Fourier, 17-1 (1967), 295-323. Zbl0195.14403MR37 #1760
  7. [7] J. BONET, R. BRAUN, R. MEISE, B. TAYLOR, Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions, Studia Math., 99, (1991), 155-184. Zbl0738.46009MR93e:46030
  8. [8] T. GRAMCHEV, G. POPOV, Gevrey normal forms of glancing hypersurfaces (in preparation). 
  9. [9] A. GIORGILLI, A. DELSHAMS, E. FONTICH, L. GALGANI, C. SIMÓ, Effective stability for hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, J. Diff. Eq., 77 (1989), 167-198. Zbl0675.70027MR90c:70026
  10. [10] A. GIORGILLI, E. ZEHNDER, Exponential stability for time dependent potentials, Z. angew. Math. Phys., 43 (1992), 827-855. Zbl0766.58032MR93i:58088
  11. [11] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators III, IV, Berlin - Heidelberg - New York, Springer ; 1985. Zbl0601.35001
  12. [12] V. KOVACHEV, G. POPOV, Invariant tori for the billiard ball map, Trans. Am. Math. Soc., 317 (1990), 45-81. Zbl0686.58037MR90e:58050
  13. [13] H. KOMATSU, Ultradistributions. II. The kernel theorem and ultradistributions with support on submanifold, J. Fac. Sci. Univ. Tokyo, Sect. IA 24 (1977), 607-628. Zbl0385.46027MR57 #17280
  14. [14] H. KOMATSU, An analogy of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem for ultradistributions as its dual, J. Fac. Sci. Univ. Tokyo, Sect. IA 26 (1979), 239-254. Zbl0424.46032MR81i:35008
  15. [15] S. KUKSIN, J. PÖSCHEL, On the inclusion of analytic symplectic maps in analytic hamiltonian flows and its applications, preprint ETH-Zürich (1992). Zbl0797.58025
  16. [16] V. LAZUTKIN, The existence of caustics for a billiard problem in a convex domain, Math. USSR Izv., 7, (1973), 185-214. Zbl0277.52002
  17. [17] P. LOCHAK, Canonical perturbation theory : an approach based on joint approximations (Russian), Uspekhi Mat. Nauk 47, (6), (1992), 59-140 ; translation in : Russian Math. Surveys 47, (6), (1992), 57-133. Zbl0795.58042MR94f:58110
  18. [18] P. LOCHAK, A.I. NEISHTADT, Estimates of stability time in nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2, (4) (1992), 495-499. Zbl1055.37573MR94a:58110
  19. [19] Sh. MARVIZI, R. MELROSE, Spectral invariants of convex planar regions, J. Diff. Geom., 17 (1982), 475-502. Zbl0492.53033MR85d:58084
  20. [20] R. MELROSE, Equivalence of glancing hypersurfaces, Inventiones Math., 37 (1976), 165-191. Zbl0354.53033MR55 #9173
  21. [21] J. MOSER, On invariant curves of area preserving mappings of an annulus., Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, (1962) 1-20. Zbl0107.29301MR26 #5255
  22. [22] N. NEKHOROSHEV, Exponential estimate of the stability time of near-integrable hamiltonian systems I, Russ. Math. Surveys, 32 (6) (1977), 1-65. Zbl0389.70028
  23. [23] N. NEKHOROSHEV, Exponential estimate of the stability time of near-integrable hamiltonian systems II, Trudy Sem. Petrovs., 5 (1979), 5-50 (in russian). Zbl0668.34046
  24. [24] T. OSHIMA, On analytic equivalence of glancing hypersurfaces, Sci. Papers College Gen. Ed. Univ. Tokyo, 28 (1) (1978), 51-57. Zbl0382.53026MR58 #13231
  25. [25] J. PÖSCHEL, Nekhoroshev estimates for quasi-convex hamiltonian systems, Math. Z., 213 (1993), 187-217. Zbl0857.70009MR94m:58089
  26. [26] L. RODINO, Linear partial differential operators in Gevrey spaces, Singapore-New Jersey-London-Hong Kong, World Scientific, 1992. Zbl0869.35005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.