Nekhoroshev type estimates for billiard ball maps
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 3, page 859-895
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. BAZZANI, S. MARMI, G. TURCHETTI, Nekhoroshev estimate for isochronous non resonant symplectic maps, Celestial Mech. and Dynamical Astronomy, 47 (1990), 333-359. Zbl0703.70031MR92b:58207
- [2] G. BENETTIN, L. GALGANI, A. GIORGILLI, A proof of Nekhoroshev's theorem for the stability times in nearly integrable hamiltonian systems, Celestial Mech., 37 (1985), 1-25. Zbl0602.58022MR87i:58051
- [3] G. BENETTIN, G. GALLAVOTTI, Stability of motions near resonances in quasi-integrable hamiltonian systems, J. Stat. Phys., 44 (1986), 293-338. Zbl0636.70018MR88h:58042
- [4] M. BERGER, Sur les caustiques de surfaces en dimension 3. C. R. Acad. Sci. Paris, Série I, 331 (1990), 333-336. Zbl0713.53002MR91h:58007
- [5] P. BOLLEY, J. CAMUS, G. MÉTIVIER, Régularité Gevrey et itérés pour une classe d'opérateurs hypoelliptiques, Rend. Sem. Mat. Univ. Polit. Torino, 41 (1983), 51-74. Zbl0542.35022MR85h:35058
- [6] L. BOUTET de MONVEL, P. KREE, Pseudodifferential operators and Gevrey classes, Ann. Inst. Fourier, 17-1 (1967), 295-323. Zbl0195.14403MR37 #1760
- [7] J. BONET, R. BRAUN, R. MEISE, B. TAYLOR, Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions, Studia Math., 99, (1991), 155-184. Zbl0738.46009MR93e:46030
- [8] T. GRAMCHEV, G. POPOV, Gevrey normal forms of glancing hypersurfaces (in preparation).
- [9] A. GIORGILLI, A. DELSHAMS, E. FONTICH, L. GALGANI, C. SIMÓ, Effective stability for hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, J. Diff. Eq., 77 (1989), 167-198. Zbl0675.70027MR90c:70026
- [10] A. GIORGILLI, E. ZEHNDER, Exponential stability for time dependent potentials, Z. angew. Math. Phys., 43 (1992), 827-855. Zbl0766.58032MR93i:58088
- [11] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators III, IV, Berlin - Heidelberg - New York, Springer ; 1985. Zbl0601.35001
- [12] V. KOVACHEV, G. POPOV, Invariant tori for the billiard ball map, Trans. Am. Math. Soc., 317 (1990), 45-81. Zbl0686.58037MR90e:58050
- [13] H. KOMATSU, Ultradistributions. II. The kernel theorem and ultradistributions with support on submanifold, J. Fac. Sci. Univ. Tokyo, Sect. IA 24 (1977), 607-628. Zbl0385.46027MR57 #17280
- [14] H. KOMATSU, An analogy of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem for ultradistributions as its dual, J. Fac. Sci. Univ. Tokyo, Sect. IA 26 (1979), 239-254. Zbl0424.46032MR81i:35008
- [15] S. KUKSIN, J. PÖSCHEL, On the inclusion of analytic symplectic maps in analytic hamiltonian flows and its applications, preprint ETH-Zürich (1992). Zbl0797.58025
- [16] V. LAZUTKIN, The existence of caustics for a billiard problem in a convex domain, Math. USSR Izv., 7, (1973), 185-214. Zbl0277.52002
- [17] P. LOCHAK, Canonical perturbation theory : an approach based on joint approximations (Russian), Uspekhi Mat. Nauk 47, (6), (1992), 59-140 ; translation in : Russian Math. Surveys 47, (6), (1992), 57-133. Zbl0795.58042MR94f:58110
- [18] P. LOCHAK, A.I. NEISHTADT, Estimates of stability time in nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2, (4) (1992), 495-499. Zbl1055.37573MR94a:58110
- [19] Sh. MARVIZI, R. MELROSE, Spectral invariants of convex planar regions, J. Diff. Geom., 17 (1982), 475-502. Zbl0492.53033MR85d:58084
- [20] R. MELROSE, Equivalence of glancing hypersurfaces, Inventiones Math., 37 (1976), 165-191. Zbl0354.53033MR55 #9173
- [21] J. MOSER, On invariant curves of area preserving mappings of an annulus., Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, (1962) 1-20. Zbl0107.29301MR26 #5255
- [22] N. NEKHOROSHEV, Exponential estimate of the stability time of near-integrable hamiltonian systems I, Russ. Math. Surveys, 32 (6) (1977), 1-65. Zbl0389.70028
- [23] N. NEKHOROSHEV, Exponential estimate of the stability time of near-integrable hamiltonian systems II, Trudy Sem. Petrovs., 5 (1979), 5-50 (in russian). Zbl0668.34046
- [24] T. OSHIMA, On analytic equivalence of glancing hypersurfaces, Sci. Papers College Gen. Ed. Univ. Tokyo, 28 (1) (1978), 51-57. Zbl0382.53026MR58 #13231
- [25] J. PÖSCHEL, Nekhoroshev estimates for quasi-convex hamiltonian systems, Math. Z., 213 (1993), 187-217. Zbl0857.70009MR94m:58089
- [26] L. RODINO, Linear partial differential operators in Gevrey spaces, Singapore-New Jersey-London-Hong Kong, World Scientific, 1992. Zbl0869.35005