Mean periodic functions on phase space and the Pompeiu problem with a twist

Sundaram Thangavelu

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 4, page 1007-1035
  • ISSN: 0373-0956

Abstract

top
We show that when f is a mean periodic function of tempered growth on the reduced Heisenberg group then the closed translation and rotation invariant subspace generated by f contains an elementary spherical function. Using a Paley-Wiener theorem for the Fourier-Weyl transform we formulate a conjecture for arbitrary mean periodic functions.

How to cite

top

Thangavelu, Sundaram. "Mean periodic functions on phase space and the Pompeiu problem with a twist." Annales de l'institut Fourier 45.4 (1995): 1007-1035. <http://eudml.org/doc/75142>.

@article{Thangavelu1995,
abstract = {We show that when $f$ is a mean periodic function of tempered growth on the reduced Heisenberg group then the closed translation and rotation invariant subspace generated by $f$ contains an elementary spherical function. Using a Paley-Wiener theorem for the Fourier-Weyl transform we formulate a conjecture for arbitrary mean periodic functions.},
author = {Thangavelu, Sundaram},
journal = {Annales de l'institut Fourier},
keywords = {mean periodic functions; spherical functions; representations; Paley- Wiener theorem; Weyl transform; Pompeiu problem; reduced Heisenberg group; Fourier-Weyl transform},
language = {eng},
number = {4},
pages = {1007-1035},
publisher = {Association des Annales de l'Institut Fourier},
title = {Mean periodic functions on phase space and the Pompeiu problem with a twist},
url = {http://eudml.org/doc/75142},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Thangavelu, Sundaram
TI - Mean periodic functions on phase space and the Pompeiu problem with a twist
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 4
SP - 1007
EP - 1035
AB - We show that when $f$ is a mean periodic function of tempered growth on the reduced Heisenberg group then the closed translation and rotation invariant subspace generated by $f$ contains an elementary spherical function. Using a Paley-Wiener theorem for the Fourier-Weyl transform we formulate a conjecture for arbitrary mean periodic functions.
LA - eng
KW - mean periodic functions; spherical functions; representations; Paley- Wiener theorem; Weyl transform; Pompeiu problem; reduced Heisenberg group; Fourier-Weyl transform
UR - http://eudml.org/doc/75142
ER -

References

top
  1. [1]M. AGRANOVSKY, C. BERENSTEIN, D.C. CHANG and D. PASCUAS, Injectivity of the Pompeiu transform in the Heisenberg group, J. Analyse Math., 63 (1994), 131-173. Zbl0808.43002MR95d:43007
  2. [2]S.C. BAGCHI and A. SITARAM, Spherical mean periodic functions on semisimple Lie groups, Pacific J. Math., 84 (1979), 241-250. Zbl0442.43017MR81j:43021
  3. [3]S.C. BAGCHI and A. SITARAM, The Pompeiu problem revisited, L'Enseignement Math., 36 (1990), 67-91. Zbl0722.43009MR91k:43013
  4. [4]L. BROWN, B.M. SCHREIBER and B.A. TAYLOR, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier, Grenoble, 23-3 (1973), 125-154. Zbl0265.46044MR50 #4979
  5. [5]G. FOLLAND, Harmonic Analysis in phase space, Ann. Math. Stud. N° 122, Princeton Univ. Press, Princeton (1989). Zbl0682.43001MR92k:22017
  6. [6]D.I. GUREVICH, Counterexamples to a problem of L. Schwartz, Funct. Anal. Appl., 197 (1975), 116-120. Zbl0326.46020
  7. [7]L. SCHWARTZ, Theorie générale des functions moyenne-periodique, Ann. Math., 48 (1947), 857-928. Zbl0030.15004MR9,428c
  8. [8]S. THANGAVELU, On Paley-Wiener theorems for the Heisenberg group, J. Funct. Anal., Vol. 115, N° 1 (1993), 24-44. Zbl0793.43006MR94m:43017
  9. [9]S. THANGAVELU, Lectures on Hermite and Laguerre expansions, Math. Notes. 42, Princeton Univ. Press, Princeton, 1993. Zbl0791.41030MR94i:42001
  10. [10]S. THANGAVELU, Regularity of twisted spherical means and special Hermite expansions, Proc. Ind. Acad. Sc., Vol. 103, N° 3 (1993), 303-320. Zbl0821.43005MR95c:33015
  11. [11]S. THANGAVELU, A Paley-Wiener theorem for step two nilpotent Lie groups, Revist. Math. Ibero, Vol. 10, N° 1 (1994), 177-187. Zbl0820.43004MR95b:22019
  12. [12]S. THANGAVELU, Spherical means and C.R. functions on the Heisenberg group, J. Analyse Math., Vol. 63 (1994), 255-286. Zbl0822.43001MR95c:43008
  13. [13]Y. WEIT, On Schwartz theorem for the motion group, Ann. Inst. Fourier, Grenoble, 30-1 (1980), 91-107. Zbl0407.43008MR81h:43007
  14. [14]L. ZALCMAN, A bibliographic survey of the Pompeiu problem, in “Approximation by solutions of P.D.E.” (B. Fuglede et al., Eds), 177-186. Kluwer Academic, (1992). Zbl0830.26005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.