Spectral synthesis and the Pompeiu problem
L. Brown; B. Schreiber; B. A. Taylor
Annales de l'institut Fourier (1973)
- Volume: 23, Issue: 3, page 125-154
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. BROWN, F. SCHNITZER and A.L. SHIELDS, A note on a problem of D. Pompeiu, Math. Zeitschr., 105 (1968), 59-61. Zbl0161.24704MR37 #2156
- [2] C. CHRISTOV, Sur un problème de M. Pompeiu, Mathematica (Timisoara), 23 (1948), 103-107. Zbl0031.01503MR10,20d
- [3] C. CHRISTOV, Sur l'équation intégrale généralisée de M. Pompeiu, Annuaire Univ. Sofia Fac. Sci., Livre 1, 45 (1948-1949), 167-178.
- [4] R.V. CHURCHILL, Fourier Series and Boundary Value Problems, 2nd ed., McGraw-Hill, New York, 1963. Zbl0115.05802MR26 #6665
- [5] J. DELSARTE, Note sur une propriété nouvelle des fonctions harmoniques, C.R. Acad. Sci. Paris, 246 (1958), 1358-1360. Zbl0084.09403MR20 #2548
- [6] J. DELSARTE, Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem, Notes by K.B. Vedak, Tata Institute of Fundamental Research, Bombay, 1961.
- [7] L. EHRENPREIS, Fourier Analysis in Several Complex Variables, Interscience, Wiley, New York, 1970. Zbl0195.10401MR44 #3066
- [8] T.W. GAMELIN, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. Zbl0213.40401MR53 #14137
- [9] L. HÖRMANDER, Linear Partial Differential Operators, Grundl. der Math. Wiss., Band 116, Springer-Verlag and Academic Press, New York, 1963. Zbl0108.09301MR28 #4221
- [10] L. HÖRMANDER, An Introduction to Complex Analysis in Several Variables, D. van Nostrand, New York, 1966. Zbl0138.06203
- [11] J.J. KELLEHER and B.A. TAYLOR, Closed ideals in locally convex algebras of analytic functions, J. Reine Angew. Math., 255 (1972), 190-209. Zbl0237.46052MR46 #6046
- [12] B. MALGRANGE, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble), 6 (1955-1956), 271-355. Zbl0071.09002MR19,280a
- [13] D. POMPEIU, Sur une propriété des fonctions continues dépendent de plusieurs variables, Bull. Sci. Math. (2), 53 (1929), 328-332. Zbl55.0138.04JFM55.0138.04
- [14] D. POMPEIU, Sur une propriété intégrale des fonctions de deux variables réelles, Bull. Sci. Acad. Royale Belgique (5), 15 (1929), 265-269. Zbl55.0139.01JFM55.0139.01
- [15] S.P. PONOMAREV, On a condition for analyticity, Sibirskii Mat. Zh., 11 (1970), 471-474. Zbl0203.07201
- [16] W. RUDIN, Fourier Analysis on Groups, Interscience, Wiley, New York, 1962. Zbl0107.09603MR27 #2808
- [17] L. SCHWARTZ, Théorie générale des fonctions moyennes-périodiques, Ann. of Math. (2), 48 (1947), 857-929. Zbl0030.15004MR9,428c
- [18] L. SCHWARTZ, Théorie des distributions, 2nd. ed., Act. Scient. et Indust., No. 1091, Hermann, Paris, 1957. Zbl0078.11003
- [19] L. ZALCMAN, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal., 47 (1972), 237-254. Zbl0251.30047MR50 #582
Citations in EuDML Documents
top- Yitzhak Weit, On Schwartz's theorem for the motion group
- Roger Gay, Inversion de la transformation de Pompeiu locale
- Axel Osses, Jean-Pierre Puel, Approximate controllability for a linear model of fluid structure interaction
- Sundaram Thangavelu, Mean periodic functions on phase space and the Pompeiu problem with a twist
- Axel Osses, Jean-Pierre Puel, Approximate controllability for a linear model of fluid structure interaction
- Michael Vogelius, An inverse problem for the equation
- Robert Dalmasso, Le problème de Pompeiu