Maximally degenerate laplacians
Annales de l'institut Fourier (1996)
- Volume: 46, Issue: 2, page 547-587
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topZelditch, Steven. "Maximally degenerate laplacians." Annales de l'institut Fourier 46.2 (1996): 547-587. <http://eudml.org/doc/75188>.
@article{Zelditch1996,
abstract = {The Laplacian $\Delta _g$ of a compact Riemannian manifold $(M,g)$ is called maximally degenerate if its eigenvalue multiplicity function $m_g(k)$ is of maximal growth among metrics of the same dimension and volume. Canonical spheres $(S^n,\{\rm can\})$ and CROSSes are MD, and one asks if they are the only examples. We show that a MD metric must be at least a Zoll metric with just one distinct eigenvalue in each cluster, and hence with all band invariants equal to zero. The principal band invariant is then calculated in terms of geodesic integrals of curvature and Jacobi fields, giving a local metric condition for maximal degeneracy. In special cases (surfaces of revolution, real projective spaces) the MD metrics are shown to be CROSSes.},
author = {Zelditch, Steven},
journal = {Annales de l'institut Fourier},
keywords = {Zoll metric; eigenvalue multiplicities; band invariants; non-commutative residues; Jacobi fields; Fourier integral operators; Toeplitz operators},
language = {eng},
number = {2},
pages = {547-587},
publisher = {Association des Annales de l'Institut Fourier},
title = {Maximally degenerate laplacians},
url = {http://eudml.org/doc/75188},
volume = {46},
year = {1996},
}
TY - JOUR
AU - Zelditch, Steven
TI - Maximally degenerate laplacians
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 2
SP - 547
EP - 587
AB - The Laplacian $\Delta _g$ of a compact Riemannian manifold $(M,g)$ is called maximally degenerate if its eigenvalue multiplicity function $m_g(k)$ is of maximal growth among metrics of the same dimension and volume. Canonical spheres $(S^n,{\rm can})$ and CROSSes are MD, and one asks if they are the only examples. We show that a MD metric must be at least a Zoll metric with just one distinct eigenvalue in each cluster, and hence with all band invariants equal to zero. The principal band invariant is then calculated in terms of geodesic integrals of curvature and Jacobi fields, giving a local metric condition for maximal degeneracy. In special cases (surfaces of revolution, real projective spaces) the MD metrics are shown to be CROSSes.
LA - eng
KW - Zoll metric; eigenvalue multiplicities; band invariants; non-commutative residues; Jacobi fields; Fourier integral operators; Toeplitz operators
UR - http://eudml.org/doc/75188
ER -
References
top- [Besse] A. BESSE, Manifolds all of whose geodesics are closed, Ergeb, Math., 93, Springer-Verlag, New York, 1978. Zbl0387.53010MR80c:53044
- [Besson] G. BESSON, Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier, Grenoble, 30-1 (1980), 109-128. Zbl0417.30033MR81h:58059
- [BGM] M. BERGER, P. GAUDUCHON, E. MAZET, Le spectre d'une variété riemannienne, SLN 194, Springer-Verlag, New York, 1974. Zbl0223.53034MR43 #8025
- [BMG] L. BOUTET DE MONVEL, V. GUILLEMIN, The spectral theory of Toeplitz operators, Ann. Math. Studies, 99, Princeton Univ. Press, 1981. Zbl0469.47021MR85j:58141
- [Bru] J. BRÜNING, Heat equation asymptotics for singular Sturm-Liouville operators, Math. Ann., 268 (1984), 173-196. Zbl0528.34020MR85k:58075
- [CV] Y. COLIN DE VERDIÈRE, Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv., 54 (1979), 508-522. Zbl0459.58014MR81a:58052
- [CV2] Y. COLIN DE VERDIÈRE, Construction de laplaciens dont une partie finie du spectre est donnée, Ann. Scient. Éc. Norm. Sup., 20 (1987), 599-615. Zbl0636.58036MR90d:58156
- [DG] H. DUISTERMAAT, V. GUILLEMIN, The spectrum of elliptic operators and periodic bicharacteristics, Inv. Math., 29 (1975), 39-79. Zbl0307.35071MR53 #9307
- [Engman] M. ENGMAN, New spectral characterization theorems for S2, Pacific J. Math., 154 (1992), 215-229. Zbl0713.53025MR93d:58173
- [Gr] A. GRAY, Tubes, Addison-Wesley, New York, 1990. Zbl0692.53001MR92d:53002
- [Gu] V. GUILLEMIN and A. URIBE, Circular symmetry and the trace formula, Invent. Math., 96 (1989), 385-423. Zbl0686.58040MR90e:58159
- [G1] V. GUILLEMIN, Band asymptotics in two dimensions, Adv. Math., 42, 148-282. Zbl0478.58029MR83b:58015
- [G2] V. GUILLEMIN, Some spectral results on rank one symmetric spaces, Adv. Math., 28 (1978), 129-137. Zbl0441.58012MR58 #13228a
- [G3] V. GUILLEMIN, Some spectral results for the Laplace operator with potential on the n-sphere, Adv. Math.; 27 (1978), 273-286. Zbl0433.35052MR57 #17730
- [HoI-IV] L. HÖRMANDER, The analysis of partial differential operators, vol. I-IV, Grundlehren 256-7, 274-5, Springer-Verlag, New York, 1983-1984. Zbl0521.35001
- [I] A. IVIC, The Riemann zeta function, Wiley-Interscience, John Wiley and Sons, New York, 1985. Zbl0556.10026MR87d:11062
- [Jac] R. JACOBY, One parameter transformation groups of the three sphere, Proc. AMS, 7 (1956), 131-142. Zbl0070.40103MR17,762a
- [K] C. KASSEL, Le résidu non commutatif, Séminaire Bourbaki n° 708, Astérisque, 177-178 (1989), 199-229. Zbl0701.58054MR91e:58190
- [Sh] M. A. SHUBIN, Pseudo-differential operators and spectral theory, Springer-Verlag, 1987. Zbl0616.47040
- [W] A. WEINSTEIN, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., 44 (1977), 883-892. Zbl0385.58013MR58 #2919
- [W2] A. WEINSTEIN, Fourier integral operators, quantization and the spectra of riemannian manifolds, in Géométrie Symplectique et Physique Mathématique, Colloq. Int. CNRS n° 237 (1975), 289-298. Zbl0327.58013MR58 #31307
- [Widom] H. WIDOM, The Laplace operator with potential on the 2-sphere, Adv. in Math., 31 (1979), 63-66. Zbl0407.58035MR80d:58071
- [Yau] S. T. YAU, Open problems in geometry, in Proc. Symp. Pure Math., vol. 54, part 1, AMS (1992), 1-28. Zbl0801.53001MR94k:53001
- [Z1] S. ZELDITCH, Fine structure of Zoll spectra, J. Fun. An., to appear. Zbl0870.58103
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.