Maximally degenerate laplacians

Steven Zelditch

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 2, page 547-587
  • ISSN: 0373-0956

Abstract

top
The Laplacian Δ g of a compact Riemannian manifold ( M , g ) is called maximally degenerate if its eigenvalue multiplicity function m g ( k ) is of maximal growth among metrics of the same dimension and volume. Canonical spheres ( S n , can ) and CROSSes are MD, and one asks if they are the only examples. We show that a MD metric must be at least a Zoll metric with just one distinct eigenvalue in each cluster, and hence with all band invariants equal to zero. The principal band invariant is then calculated in terms of geodesic integrals of curvature and Jacobi fields, giving a local metric condition for maximal degeneracy. In special cases (surfaces of revolution, real projective spaces) the MD metrics are shown to be CROSSes.

How to cite

top

Zelditch, Steven. "Maximally degenerate laplacians." Annales de l'institut Fourier 46.2 (1996): 547-587. <http://eudml.org/doc/75188>.

@article{Zelditch1996,
abstract = {The Laplacian $\Delta _g$ of a compact Riemannian manifold $(M,g)$ is called maximally degenerate if its eigenvalue multiplicity function $m_g(k)$ is of maximal growth among metrics of the same dimension and volume. Canonical spheres $(S^n,\{\rm can\})$ and CROSSes are MD, and one asks if they are the only examples. We show that a MD metric must be at least a Zoll metric with just one distinct eigenvalue in each cluster, and hence with all band invariants equal to zero. The principal band invariant is then calculated in terms of geodesic integrals of curvature and Jacobi fields, giving a local metric condition for maximal degeneracy. In special cases (surfaces of revolution, real projective spaces) the MD metrics are shown to be CROSSes.},
author = {Zelditch, Steven},
journal = {Annales de l'institut Fourier},
keywords = {Zoll metric; eigenvalue multiplicities; band invariants; non-commutative residues; Jacobi fields; Fourier integral operators; Toeplitz operators},
language = {eng},
number = {2},
pages = {547-587},
publisher = {Association des Annales de l'Institut Fourier},
title = {Maximally degenerate laplacians},
url = {http://eudml.org/doc/75188},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Zelditch, Steven
TI - Maximally degenerate laplacians
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 2
SP - 547
EP - 587
AB - The Laplacian $\Delta _g$ of a compact Riemannian manifold $(M,g)$ is called maximally degenerate if its eigenvalue multiplicity function $m_g(k)$ is of maximal growth among metrics of the same dimension and volume. Canonical spheres $(S^n,{\rm can})$ and CROSSes are MD, and one asks if they are the only examples. We show that a MD metric must be at least a Zoll metric with just one distinct eigenvalue in each cluster, and hence with all band invariants equal to zero. The principal band invariant is then calculated in terms of geodesic integrals of curvature and Jacobi fields, giving a local metric condition for maximal degeneracy. In special cases (surfaces of revolution, real projective spaces) the MD metrics are shown to be CROSSes.
LA - eng
KW - Zoll metric; eigenvalue multiplicities; band invariants; non-commutative residues; Jacobi fields; Fourier integral operators; Toeplitz operators
UR - http://eudml.org/doc/75188
ER -

References

top
  1. [Besse] A. BESSE, Manifolds all of whose geodesics are closed, Ergeb, Math., 93, Springer-Verlag, New York, 1978. Zbl0387.53010MR80c:53044
  2. [Besson] G. BESSON, Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier, Grenoble, 30-1 (1980), 109-128. Zbl0417.30033MR81h:58059
  3. [BGM] M. BERGER, P. GAUDUCHON, E. MAZET, Le spectre d'une variété riemannienne, SLN 194, Springer-Verlag, New York, 1974. Zbl0223.53034MR43 #8025
  4. [BMG] L. BOUTET DE MONVEL, V. GUILLEMIN, The spectral theory of Toeplitz operators, Ann. Math. Studies, 99, Princeton Univ. Press, 1981. Zbl0469.47021MR85j:58141
  5. [Bru] J. BRÜNING, Heat equation asymptotics for singular Sturm-Liouville operators, Math. Ann., 268 (1984), 173-196. Zbl0528.34020MR85k:58075
  6. [CV] Y. COLIN DE VERDIÈRE, Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv., 54 (1979), 508-522. Zbl0459.58014MR81a:58052
  7. [CV2] Y. COLIN DE VERDIÈRE, Construction de laplaciens dont une partie finie du spectre est donnée, Ann. Scient. Éc. Norm. Sup., 20 (1987), 599-615. Zbl0636.58036MR90d:58156
  8. [DG] H. DUISTERMAAT, V. GUILLEMIN, The spectrum of elliptic operators and periodic bicharacteristics, Inv. Math., 29 (1975), 39-79. Zbl0307.35071MR53 #9307
  9. [Engman] M. ENGMAN, New spectral characterization theorems for S2, Pacific J. Math., 154 (1992), 215-229. Zbl0713.53025MR93d:58173
  10. [Gr] A. GRAY, Tubes, Addison-Wesley, New York, 1990. Zbl0692.53001MR92d:53002
  11. [Gu] V. GUILLEMIN and A. URIBE, Circular symmetry and the trace formula, Invent. Math., 96 (1989), 385-423. Zbl0686.58040MR90e:58159
  12. [G1] V. GUILLEMIN, Band asymptotics in two dimensions, Adv. Math., 42, 148-282. Zbl0478.58029MR83b:58015
  13. [G2] V. GUILLEMIN, Some spectral results on rank one symmetric spaces, Adv. Math., 28 (1978), 129-137. Zbl0441.58012MR58 #13228a
  14. [G3] V. GUILLEMIN, Some spectral results for the Laplace operator with potential on the n-sphere, Adv. Math.; 27 (1978), 273-286. Zbl0433.35052MR57 #17730
  15. [HoI-IV] L. HÖRMANDER, The analysis of partial differential operators, vol. I-IV, Grundlehren 256-7, 274-5, Springer-Verlag, New York, 1983-1984. Zbl0521.35001
  16. [I] A. IVIC, The Riemann zeta function, Wiley-Interscience, John Wiley and Sons, New York, 1985. Zbl0556.10026MR87d:11062
  17. [Jac] R. JACOBY, One parameter transformation groups of the three sphere, Proc. AMS, 7 (1956), 131-142. Zbl0070.40103MR17,762a
  18. [K] C. KASSEL, Le résidu non commutatif, Séminaire Bourbaki n° 708, Astérisque, 177-178 (1989), 199-229. Zbl0701.58054MR91e:58190
  19. [Sh] M. A. SHUBIN, Pseudo-differential operators and spectral theory, Springer-Verlag, 1987. Zbl0616.47040
  20. [W] A. WEINSTEIN, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., 44 (1977), 883-892. Zbl0385.58013MR58 #2919
  21. [W2] A. WEINSTEIN, Fourier integral operators, quantization and the spectra of riemannian manifolds, in Géométrie Symplectique et Physique Mathématique, Colloq. Int. CNRS n° 237 (1975), 289-298. Zbl0327.58013MR58 #31307
  22. [Widom] H. WIDOM, The Laplace operator with potential on the 2-sphere, Adv. in Math., 31 (1979), 63-66. Zbl0407.58035MR80d:58071
  23. [Yau] S. T. YAU, Open problems in geometry, in Proc. Symp. Pure Math., vol. 54, part 1, AMS (1992), 1-28. Zbl0801.53001MR94k:53001
  24. [Z1] S. ZELDITCH, Fine structure of Zoll spectra, J. Fun. An., to appear. Zbl0870.58103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.