Random perturbations of exponential Riesz bases in
Gennadii Chistyakov; Yura Lyubarskii
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 1, page 201-255
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topChistyakov, Gennadii, and Lyubarskii, Yura. "Random perturbations of exponential Riesz bases in $L^2(-\pi ,\pi )$." Annales de l'institut Fourier 47.1 (1997): 201-255. <http://eudml.org/doc/75227>.
@article{Chistyakov1997,
abstract = {Let a sequence $\lbrace \lambda _n\rbrace \subset \{\Bbb R\}$ be given such that the exponential system $\lbrace \{\rm exp\}\,(i \lambda _n x)\rbrace $ forms a Riesz basis in $L^2(-\pi ,\pi )$ and $\lbrace \xi _n\rbrace $ be a sequence of independent real-valued random variables. We study the properties of the system $\lbrace \{\rm \exp \}(i (\lambda _n+\xi _n) x)\rbrace $ as well as related problems on estimation of entire functions with random zeroes and also problems on reconstruction of bandlimited signals with bandwidth $2\pi $ via their samples at the random points $\lbrace \lambda _n+\xi _n\rbrace $.},
author = {Chistyakov, Gennadii, Lyubarskii, Yura},
journal = {Annales de l'institut Fourier},
keywords = {exponential system; Riesz basis; reconstruction},
language = {eng},
number = {1},
pages = {201-255},
publisher = {Association des Annales de l'Institut Fourier},
title = {Random perturbations of exponential Riesz bases in $L^2(-\pi ,\pi )$},
url = {http://eudml.org/doc/75227},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Chistyakov, Gennadii
AU - Lyubarskii, Yura
TI - Random perturbations of exponential Riesz bases in $L^2(-\pi ,\pi )$
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 1
SP - 201
EP - 255
AB - Let a sequence $\lbrace \lambda _n\rbrace \subset {\Bbb R}$ be given such that the exponential system $\lbrace {\rm exp}\,(i \lambda _n x)\rbrace $ forms a Riesz basis in $L^2(-\pi ,\pi )$ and $\lbrace \xi _n\rbrace $ be a sequence of independent real-valued random variables. We study the properties of the system $\lbrace {\rm \exp }(i (\lambda _n+\xi _n) x)\rbrace $ as well as related problems on estimation of entire functions with random zeroes and also problems on reconstruction of bandlimited signals with bandwidth $2\pi $ via their samples at the random points $\lbrace \lambda _n+\xi _n\rbrace $.
LA - eng
KW - exponential system; Riesz basis; reconstruction
UR - http://eudml.org/doc/75227
ER -
References
top- [1] J.P. KAHANE, Some random series of functions, Cambridge University Press, Cambridge, 1985. Zbl0571.60002MR87m:60119
- [2] K. SEIP and A.M. ULANOVSKII, Random frames, to appear in Proc. London. Math. Soc.
- [3] R. PALEY, N. WIENER, Fourier Transform in the Complex Domain, AMS, New-York, 1934. Zbl0011.01601JFM60.0345.02
- [4] N. LEVINSON, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. Vol. 19, Amer. Math. Soc., New York, 1940.
- [5] B.S. PAVLOV, Basicity of an exponential system and Muckenhoupt's condition, Sov. Math. Dokl., 20 (1979), 655-659. Zbl0429.30004
- [6] S.V. KHRUSHCHEV, N.K. NIKOLSKII, and B.S. PAVLOV, Unconditional bases of exponentials and reproducing kernels, in Complex Analysis and Spectral Theory (ed. V. P. Havin and N. K. Nikolskii), Lecture Notes in Math. 864, Springer-Verlag, Berlin, Heidelberg, 1981, 214-335. Zbl0466.46018MR84k:46019
- [7] Yu. LYUBARSKII, K. SEIP, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap)-condition, Rev. mat. iberoamericana, to appear. Zbl0918.42003
- [8] R.M. YOUNG, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. Zbl0493.42001MR81m:42027
- [9] A.J. JERRI, The Shannon sampling theorem - its various extensions and applications : a tutorial review, Proc. IEEE, 65 (1977), 1565-1596. Zbl0442.94002
- [10] P.L. BUTZER, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition, 3 (1983), 185-212. Zbl0523.94003
- [11] J.R. HIGGINS, Five short stories about the cardinal series, Bull. Amer. Math. Soc., 12 (1985), 45-89. Zbl0562.42002MR86k:42045
- [12] J. BENEDETTO, Irregular sampling and frames, in Wavelets : A Tutorial in Theory and Applications (ed. C. K. Chui), Academic Press, San Diego, 1992. Zbl0777.42009MR93c:42030
- [13] B. LEVIN, Basicity of exponential systems in L2, Notes of Mathematical Department of Kharkov State University and Kharkov Mathematical Society, 27, n. 4 (1961), 39-48 (Russian).
- [14] B. LEVIN, Interpolation by mean of entire functions of exponential type, in Mathematical Physics and Functional Analysis, Kharkov, Institute for Low Temperatures, n.1 (1969), 136-146.
- [15] B. LEVIN, Yu. LYUBARSKII, Interpolation by mean of entire functions from special classes and expansions in series of exponentials, Izvestiya Akad. Sci. USSR, ser. Mathematics, 39, n. 3 (1975), 657-702. (Russian, English translation in Soviet Mathematics, Izvestiya).
- [16] Yu. LYUBARSKII, Series of exponentials in the Smirnov spaces and interpolation by mean of entire functions from special classes Izvestiya Acad. Sci. USSR, ser. Mathematics, 52, n. 3 (1988), 559-580. (Russian, English translation in Soviet Mathematics, Izvestiya). Zbl0659.30006
- [17] Yu. LYUBARSKII, Frame in the Bargman spaces of entire functions, in Advances in Soviet Mathematics, 11 (1992), 167-180.
- [18] Yu. LYUBARSKII, K. SEIP, Sampling and interpolation of entire functions and exponential systems in convex domains, Arkiv Mathematik, 32 (1994), 157-193. Zbl0819.30021MR95j:30025
- [19] E. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR44 #7280
- [20] H. HELSON, G. SEGÖ, A problem in prediction theory, Ann. Mat. Pura Appl., 51 (1960), 107-138. Zbl0178.50002MR22 #12343
- [21] A. BEURLING, Interpolation for an interval on ℝ1 in The Collected Works of Arne Beurling (two volumes), Ed. L. Carleson, P. Malliavin, J. Neuberger, and J. Wermer, Birkhäuser, Boston, 1989, v.2, 351-366.
- [22] A. BEURLING, Balayage of Fourier-Stietjes Transforms, in The Collected Works of Arne Beurling (two volumes), Ed. L. Carleson, P. Malliavin, J. Neuberger, and J. Wermer, Birkhäuser, Boston, 1989, v.2, 341-350.
- [23] K. SEIP, Density theorems for sampling and interpolation in the Bargman-Fock space I, J. rein & angew Math., 429 (1992), 91-106. Zbl0745.46034MR93g:46026a
- [24] R.A. HUNT, B. MUCKENHOUPT, R.L. WHEEDEN, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), 227-156. Zbl0262.44004MR47 #701
- [25] P. KOOSIS, Introduction to Hp spaces, Cambridge University Press, Cambridge, 1980.
- [26] J.B. GARNETT, Bounded analytic functions, Academic Press, New York, 1981. Zbl0469.30024MR83g:30037
- [27] B. LEVIN, Entire functions, Moscow State University, 1971, (Russian); Revised edition in English : Lectures on entire functions, Amer. Math. Soc., 1996.
- [28] A. SHIRJAEV, Probability, Moscow, Nauka, 1980 (Russian).
- [29] H.P. ROSENTHAL, On the subspaces of Lp p > 2 spanned by sequences of independent random variables, Israel Journal of Mathematics, 8, n. 3 (1970), 273-303. Zbl0213.19303MR42 #6602
- [30] H.P. ROSENTHAL, On the span in Lp of sequences of independet random variables, in Proc. 6-th Berkley Symp. on Math. Statist. and Probability, Berkley-L.A., Univ. Calif.Press, 1972, v.2, 149-167. Zbl0255.60003MR55 #13229
- [31] C. NAGAEV and G. PINELIS, Inequalities on distributions of summs of independent random variables, Probability Theory and its Applications, 22, n. 2 (1977), 254-263. Zbl0378.60036
- [32] B. LEVIN, Distribution of zeroes of entire functions, GITTL, Moscow 1956; English transl. Amer. Math. Soc., Providence, R.I., 1964, 1980. Zbl0152.06703
- [33] N. AKHIEZER, Lectures on approximation theory, Moscow, Nauka, 1965 (Russian).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.