Random perturbations of exponential Riesz bases in L 2 ( - π , π )

Gennadii Chistyakov; Yura Lyubarskii

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 1, page 201-255
  • ISSN: 0373-0956

Abstract

top
Let a sequence { λ n } be given such that the exponential system { exp ( i λ n x ) } forms a Riesz basis in L 2 ( - π , π ) and { ξ n } be a sequence of independent real-valued random variables. We study the properties of the system { exp ( i ( λ n + ξ n ) x ) } as well as related problems on estimation of entire functions with random zeroes and also problems on reconstruction of bandlimited signals with bandwidth 2 π via their samples at the random points { λ n + ξ n } .

How to cite

top

Chistyakov, Gennadii, and Lyubarskii, Yura. "Random perturbations of exponential Riesz bases in $L^2(-\pi ,\pi )$." Annales de l'institut Fourier 47.1 (1997): 201-255. <http://eudml.org/doc/75227>.

@article{Chistyakov1997,
abstract = {Let a sequence $\lbrace \lambda _n\rbrace \subset \{\Bbb R\}$ be given such that the exponential system $\lbrace \{\rm exp\}\,(i \lambda _n x)\rbrace $ forms a Riesz basis in $L^2(-\pi ,\pi )$ and $\lbrace \xi _n\rbrace $ be a sequence of independent real-valued random variables. We study the properties of the system $\lbrace \{\rm \exp \}(i (\lambda _n+\xi _n) x)\rbrace $ as well as related problems on estimation of entire functions with random zeroes and also problems on reconstruction of bandlimited signals with bandwidth $2\pi $ via their samples at the random points $\lbrace \lambda _n+\xi _n\rbrace $.},
author = {Chistyakov, Gennadii, Lyubarskii, Yura},
journal = {Annales de l'institut Fourier},
keywords = {exponential system; Riesz basis; reconstruction},
language = {eng},
number = {1},
pages = {201-255},
publisher = {Association des Annales de l'Institut Fourier},
title = {Random perturbations of exponential Riesz bases in $L^2(-\pi ,\pi )$},
url = {http://eudml.org/doc/75227},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Chistyakov, Gennadii
AU - Lyubarskii, Yura
TI - Random perturbations of exponential Riesz bases in $L^2(-\pi ,\pi )$
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 1
SP - 201
EP - 255
AB - Let a sequence $\lbrace \lambda _n\rbrace \subset {\Bbb R}$ be given such that the exponential system $\lbrace {\rm exp}\,(i \lambda _n x)\rbrace $ forms a Riesz basis in $L^2(-\pi ,\pi )$ and $\lbrace \xi _n\rbrace $ be a sequence of independent real-valued random variables. We study the properties of the system $\lbrace {\rm \exp }(i (\lambda _n+\xi _n) x)\rbrace $ as well as related problems on estimation of entire functions with random zeroes and also problems on reconstruction of bandlimited signals with bandwidth $2\pi $ via their samples at the random points $\lbrace \lambda _n+\xi _n\rbrace $.
LA - eng
KW - exponential system; Riesz basis; reconstruction
UR - http://eudml.org/doc/75227
ER -

References

top
  1. [1] J.P. KAHANE, Some random series of functions, Cambridge University Press, Cambridge, 1985. Zbl0571.60002MR87m:60119
  2. [2] K. SEIP and A.M. ULANOVSKII, Random frames, to appear in Proc. London. Math. Soc. 
  3. [3] R. PALEY, N. WIENER, Fourier Transform in the Complex Domain, AMS, New-York, 1934. Zbl0011.01601JFM60.0345.02
  4. [4] N. LEVINSON, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. Vol. 19, Amer. Math. Soc., New York, 1940. 
  5. [5] B.S. PAVLOV, Basicity of an exponential system and Muckenhoupt's condition, Sov. Math. Dokl., 20 (1979), 655-659. Zbl0429.30004
  6. [6] S.V. KHRUSHCHEV, N.K. NIKOLSKII, and B.S. PAVLOV, Unconditional bases of exponentials and reproducing kernels, in Complex Analysis and Spectral Theory (ed. V. P. Havin and N. K. Nikolskii), Lecture Notes in Math. 864, Springer-Verlag, Berlin, Heidelberg, 1981, 214-335. Zbl0466.46018MR84k:46019
  7. [7] Yu. LYUBARSKII, K. SEIP, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's (Ap)-condition, Rev. mat. iberoamericana, to appear. Zbl0918.42003
  8. [8] R.M. YOUNG, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. Zbl0493.42001MR81m:42027
  9. [9] A.J. JERRI, The Shannon sampling theorem - its various extensions and applications : a tutorial review, Proc. IEEE, 65 (1977), 1565-1596. Zbl0442.94002
  10. [10] P.L. BUTZER, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition, 3 (1983), 185-212. Zbl0523.94003
  11. [11] J.R. HIGGINS, Five short stories about the cardinal series, Bull. Amer. Math. Soc., 12 (1985), 45-89. Zbl0562.42002MR86k:42045
  12. [12] J. BENEDETTO, Irregular sampling and frames, in Wavelets : A Tutorial in Theory and Applications (ed. C. K. Chui), Academic Press, San Diego, 1992. Zbl0777.42009MR93c:42030
  13. [13] B. LEVIN, Basicity of exponential systems in L2, Notes of Mathematical Department of Kharkov State University and Kharkov Mathematical Society, 27, n. 4 (1961), 39-48 (Russian). 
  14. [14] B. LEVIN, Interpolation by mean of entire functions of exponential type, in Mathematical Physics and Functional Analysis, Kharkov, Institute for Low Temperatures, n.1 (1969), 136-146. 
  15. [15] B. LEVIN, Yu. LYUBARSKII, Interpolation by mean of entire functions from special classes and expansions in series of exponentials, Izvestiya Akad. Sci. USSR, ser. Mathematics, 39, n. 3 (1975), 657-702. (Russian, English translation in Soviet Mathematics, Izvestiya). 
  16. [16] Yu. LYUBARSKII, Series of exponentials in the Smirnov spaces and interpolation by mean of entire functions from special classes Izvestiya Acad. Sci. USSR, ser. Mathematics, 52, n. 3 (1988), 559-580. (Russian, English translation in Soviet Mathematics, Izvestiya). Zbl0659.30006
  17. [17] Yu. LYUBARSKII, Frame in the Bargman spaces of entire functions, in Advances in Soviet Mathematics, 11 (1992), 167-180. 
  18. [18] Yu. LYUBARSKII, K. SEIP, Sampling and interpolation of entire functions and exponential systems in convex domains, Arkiv Mathematik, 32 (1994), 157-193. Zbl0819.30021MR95j:30025
  19. [19] E. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR44 #7280
  20. [20] H. HELSON, G. SEGÖ, A problem in prediction theory, Ann. Mat. Pura Appl., 51 (1960), 107-138. Zbl0178.50002MR22 #12343
  21. [21] A. BEURLING, Interpolation for an interval on ℝ1 in The Collected Works of Arne Beurling (two volumes), Ed. L. Carleson, P. Malliavin, J. Neuberger, and J. Wermer, Birkhäuser, Boston, 1989, v.2, 351-366. 
  22. [22] A. BEURLING, Balayage of Fourier-Stietjes Transforms, in The Collected Works of Arne Beurling (two volumes), Ed. L. Carleson, P. Malliavin, J. Neuberger, and J. Wermer, Birkhäuser, Boston, 1989, v.2, 341-350. 
  23. [23] K. SEIP, Density theorems for sampling and interpolation in the Bargman-Fock space I, J. rein & angew Math., 429 (1992), 91-106. Zbl0745.46034MR93g:46026a
  24. [24] R.A. HUNT, B. MUCKENHOUPT, R.L. WHEEDEN, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), 227-156. Zbl0262.44004MR47 #701
  25. [25] P. KOOSIS, Introduction to Hp spaces, Cambridge University Press, Cambridge, 1980. 
  26. [26] J.B. GARNETT, Bounded analytic functions, Academic Press, New York, 1981. Zbl0469.30024MR83g:30037
  27. [27] B. LEVIN, Entire functions, Moscow State University, 1971, (Russian); Revised edition in English : Lectures on entire functions, Amer. Math. Soc., 1996. 
  28. [28] A. SHIRJAEV, Probability, Moscow, Nauka, 1980 (Russian). 
  29. [29] H.P. ROSENTHAL, On the subspaces of Lp p &gt; 2 spanned by sequences of independent random variables, Israel Journal of Mathematics, 8, n. 3 (1970), 273-303. Zbl0213.19303MR42 #6602
  30. [30] H.P. ROSENTHAL, On the span in Lp of sequences of independet random variables, in Proc. 6-th Berkley Symp. on Math. Statist. and Probability, Berkley-L.A., Univ. Calif.Press, 1972, v.2, 149-167. Zbl0255.60003MR55 #13229
  31. [31] C. NAGAEV and G. PINELIS, Inequalities on distributions of summs of independent random variables, Probability Theory and its Applications, 22, n. 2 (1977), 254-263. Zbl0378.60036
  32. [32] B. LEVIN, Distribution of zeroes of entire functions, GITTL, Moscow 1956; English transl. Amer. Math. Soc., Providence, R.I., 1964, 1980. Zbl0152.06703
  33. [33] N. AKHIEZER, Lectures on approximation theory, Moscow, Nauka, 1965 (Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.