-equivariant polynomial automorphisms of the binary forms
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 2, page 585-597
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKurth, Alexandre. "${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms." Annales de l'institut Fourier 47.2 (1997): 585-597. <http://eudml.org/doc/75238>.
@article{Kurth1997,
abstract = {We consider the space of binary forms of degree $n\ge 1$ denoted by $R_n :=\{\Bbb C\}[x,y]_n$. We will show that every polynomial automorphism of $R_n$ which commutes with the linear $\{\rm SL\}_2 (\{\Bbb C\})$-action and which maps the variety of forms with pairwise distinct zeroes into itself, is a multiple of the identity on $R_n$.},
author = {Kurth, Alexandre},
journal = {Annales de l'institut Fourier},
keywords = {algebraic transformation groups; equivariant automorphism; binary forms; line bundle; lifting automorphisms},
language = {eng},
number = {2},
pages = {585-597},
publisher = {Association des Annales de l'Institut Fourier},
title = {$\{\rm SL\}_2$-equivariant polynomial automorphisms of the binary forms},
url = {http://eudml.org/doc/75238},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Kurth, Alexandre
TI - ${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 2
SP - 585
EP - 597
AB - We consider the space of binary forms of degree $n\ge 1$ denoted by $R_n :={\Bbb C}[x,y]_n$. We will show that every polynomial automorphism of $R_n$ which commutes with the linear ${\rm SL}_2 ({\Bbb C})$-action and which maps the variety of forms with pairwise distinct zeroes into itself, is a multiple of the identity on $R_n$.
LA - eng
KW - algebraic transformation groups; equivariant automorphism; binary forms; line bundle; lifting automorphisms
UR - http://eudml.org/doc/75238
ER -
References
top- [1] E. ARTIN, Braids and Permutations, Ann. Math., 48 (1947), 643-649. Zbl0030.17802MR9,6c
- [2] R. HARTSHORNE, Algebraic Geometry, GTM, 52, Springer-Verlag, Berlin-New York (1977). Zbl0367.14001MR57 #3116
- [3] F. KNOP, H. KRAFT, D. LUNA, T. VUST, Local Properties of Algebraic Group Actions, In : H. Kraft, P. Slodowy, T.A. Springer : Algebraische Transformations-gruppen und Invariantentheorie, Algebraic Transformation Groups and Invariant Theory, DMV Seminar Band, 13, Birkhäuser (1989), 63-75. Zbl0722.14032MR1044585
- [4] F. KNOP, H. KRAFT, T. VUST, The Picard Group of a G-Variety, In : H. Kraft, P. Slodowy, T.A. Springer : Algebraische Transformationsgruppen und Invarianten-theorie, Algebraic Transformation Groups and Invariant Theory, DMV Seminar Band, 13, Birkhäuser (1989), 77-87. Zbl0705.14005MR1044586
- [5] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, D1, Vieweg (1985). Zbl0669.14003
- [6] H. KRAFT, Klassische Invariantentheorie : Eine Einführung, In : H. Kraft, P. Slodowy, T.A. Springer : Algebraische Transformationsgruppen und Invarianten-theorie, Algebraic Transformation Groups and Invariant Theory, DMV Seminar Band, 13, Birkhäuser (1989), 41-62. Zbl0726.13003MR1044584
- [7] H. KRAFT, Algebraic Automorphisms of Affine Space, In : “Topological Methods in Algebraic Transformation Groups” ; Progress in Mathematics, vol. 80, Birkhäuser Verlag Boston Basel Berlin (1989), 81-105. Zbl0719.14030MR91g:14044
- [8] H. KRAFT, G.W. SCHWARZ, Reductive Group Actions with one-dimensional Quotient, Publ. Math. IHES, 76 (1992). Zbl0783.14026MR94e:14065
- [9] A. KURTH, Equivariant Polynomial Automorphisms, Ph.D. Thesis Basel (1996).
- [10] V. LIN, Around the 13th Hilbert Problem for Algebraic Functions, Israel Mathematical Conference Proceedings, vol. 9 (1996), 307-327. Zbl0846.32014MR96h:32027
- [11] D. LUNA, Slices étales, Bull. Soc. Math. France, Mémoire, 33 (1973), 81-105. Zbl0286.14014MR49 #7269
- [12] J.-P. SERRE, Cohomologie Galoisienne, Lecture Notes in Math., 5, Springer-Verlag, Berlin New York (1964). Zbl0128.26303
- [13] J.-P. SERRE, Local Fields, GTM, 67, Springer-Verlag, Berlin New York (1979). Zbl0423.12016
- [14] E.H. SPANIER, Algebraic Topology, Springer-Verlag, Berlin New York (1966). Zbl0145.43303MR35 #1007
- [15] H. WEYL, The Classical Groups, Their Invariants and Representations, 2nd., ed., Princeton Univ. Press, Princeton, N.J., 1946. Zbl1024.20502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.