Quadratic harmonic morphisms and O-systems
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 2, page 687-713
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOu, Ye-Lin. "Quadratic harmonic morphisms and O-systems." Annales de l'institut Fourier 47.2 (1997): 687-713. <http://eudml.org/doc/75242>.
@article{Ou1997,
abstract = {We introduce O-systems (Definition 3.1) of orthogonal transformations of $\{\Bbb R\}^m$, and establish $\{\Bbb R\}$ correspondences both between equivalence classes of Clifford systems and those of O-systems, and between O-systems and orthogonal multiplications of the form $\mu : \{\Bbb R\}^n\times \{\Bbb R\}^m\rightarrow \{\Bbb R\}^m$, which allow us to solve the existence problems both for $O$-systems and for umbilical quadratic harmonic morphisms simultaneously. The existence problem for general quadratic harmonic morphisms is then solved by the Splitting Lemma. We also study properties possessed by all quadratic harmonic morphisms for fixed pairs of domain and range spaces.},
author = {Ou, Ye-Lin},
journal = {Annales de l'institut Fourier},
keywords = {harmonic applications; quadratic harmonic morphisms; -systems; Clifford systems},
language = {eng},
number = {2},
pages = {687-713},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quadratic harmonic morphisms and O-systems},
url = {http://eudml.org/doc/75242},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Ou, Ye-Lin
TI - Quadratic harmonic morphisms and O-systems
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 2
SP - 687
EP - 713
AB - We introduce O-systems (Definition 3.1) of orthogonal transformations of ${\Bbb R}^m$, and establish ${\Bbb R}$ correspondences both between equivalence classes of Clifford systems and those of O-systems, and between O-systems and orthogonal multiplications of the form $\mu : {\Bbb R}^n\times {\Bbb R}^m\rightarrow {\Bbb R}^m$, which allow us to solve the existence problems both for $O$-systems and for umbilical quadratic harmonic morphisms simultaneously. The existence problem for general quadratic harmonic morphisms is then solved by the Splitting Lemma. We also study properties possessed by all quadratic harmonic morphisms for fixed pairs of domain and range spaces.
LA - eng
KW - harmonic applications; quadratic harmonic morphisms; -systems; Clifford systems
UR - http://eudml.org/doc/75242
ER -
References
top- [1] P. BAIRD, Harmonic maps with symmetry, harmonic morphisms, and deformation of metrics, Pitman Res. Notes Math. Ser., vol. 87, Pitman, Boston, London, Melbourne, 1983. Zbl0515.58010MR85i:58038
- [2] P. BAIRD and J.C. WOOD, Bernstein theorems for harmonic morphisms from ℝ3 and S3, Math. Ann., 280 (1988), 579-603. Zbl0621.58011MR90e:58027
- [3] P. BAIRD and J.C. WOOD, Harmonic morphisms and conformal foliations by geodesics of three-dimensional space forms, J. Austral. Math. Soc., Ser. A, 51 (1991), 118-153. Zbl0744.53013MR92k:53048
- [4] P. BAIRD and J.C. WOOD, Harmonic morphisms, Seifert fibre spaces and conformal foliations, Proc. London Math. Soc., 64 (1992), 170-196. Zbl0755.58019
- [5] P. BAIRD and J.C. WOOD, Hermitian structures and harmonic morphisms on higher dimensional Euclidean spaces, Internat. J. Math., 6 (1995), 161-192. Zbl0823.58010MR96a:58068
- [6] A. BERNARD, E.A. CAMPBELL, and A.M. DAVIE, Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier (Grenoble), 29-1 (1979), 207-228. Zbl0386.30029MR81b:30088
- [7] E. CARTAN, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., 17 (1938), 177-191. Zbl0020.06505JFM64.1361.02
- [8] L. CONLON, Differentiable Manifolds, A first course, Basler Lehrbücher, Berlin, 1993. Zbl0770.57001MR94d:58001
- [9] B. ECKMANN, Beweis des Satzes von Hurwitz-Radon, Comment. Math. Helvet., 15 (1952), 358-366. Zbl0028.10402
- [10] J. EELLS and L. LEMAIRE, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68. Zbl0401.58003MR82b:58033
- [11] J. EELLS and L. LEMAIRE, Selected topics in harmonic maps, CBMS Regional Conf. Ser. in Math., vol. 50, Amer. Math. Soc., Providence, R.I., 1983. Zbl0515.58011MR85g:58030
- [12] J. EELLS and L. LEMAIRE, Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385-524. Zbl0669.58009MR89i:58027
- [13] J. EELLS and A. RATTO, Harmonic maps and minimal immersions with symmetries, Ann. of Math. Stud., vol. 130, Princeton University Press, 1993. Zbl0783.58003
- [14] J. EELLS and P. YIU, Polynomial harmonic morphisms between Euclidean spheres, Proc. Amer. Math. Soc., vol. 123, 9 (1995), 2921-2925. Zbl0853.58036MR95k:58048
- [15] D. FERUS, H. KARCHER, and H.F. MÜNZNER, Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z., 177 (1981), 479-502.
- [16] B. FUGLEDE, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble), 28-2 (1978), 107-144. Zbl0339.53026MR80h:58023
- [17] S. GUDMUNDSSON, Harmonic morphisms from quaternionic projective spaces, Geom. Dedicata, 56 (1995), 327-332. Zbl0834.58016MR96d:58033
- [18] S. GUDMUNDSSON, Harmonic morphisms between spaces of constant curvature, Proc. Edinburgh Math. Soc., 36 (1992), 133-143. Zbl0790.58012MR93j:58034
- [19] S. GUDMUNDSSON, Harmonic morphisms from complex projective spaces, Geom. Dedicata, 53 (1994), 155-161. Zbl0826.53028MR95j:58034
- [20] S. GUDMUNDSSON and R. SIGURDSSON, A note on the classification of holomorphic harmonic morphisms, Potential Analysis, 2 (1993), 295-298. Zbl0783.58015MR94i:58043
- [21] A. HURWITZ, Über die Komposition der quadratischen Formen, Math. Ann., 88 (1923), 1-25. JFM48.1164.03
- [22] D. HUSEMOLLER, Fibre Bundles, McGraw Hill, New York, 1966. Zbl0144.44804MR37 #4821
- [23] T. ISHIHARA, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215-229. Zbl0421.31006MR80k:58045
- [24] P. LEVY, Processus Stochastiques et Mouvement Brownien, Gauthier-Villard, Paris, 1948. Zbl0034.22603
- [25] H.F. MÜNZNER, Isoparametrische Hyperflächen in Sphären, I, Math. Ann., 251 (1980), 57-71.
- [26] K. NOMIZU, Elie Cartan's work on isoparametric families of hypersurfaces, in Differential Geometry, S.S. Chern and R. Osserman ed., Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1975, 191-200. Zbl0318.53052MR54 #11240
- [27] Y.-L. OU, Complete lifts of harmonic maps and morphisms between Euclidean spaces, Contributions to Algebra and Geometry, vol. 37 (1996), 31-40. Zbl0859.53037MR97h:58050
- [28] Y.-L. OU, O-systems, orthogonal multiplications and isoparametric functions, Guangxi University for Nationalities, preprint, 1996.
- [29] Y.-L. OU, On constructions of harmonic morphisms into Euclidean spaces, J. Guangxi University for Nationalities, vol. 2 (1996), 1-6.
- [30] Y.-L. OU and J.C. WOOD, On the classification of quadratic harmonic morphisms between Euclidean spaces, Algebras, Groups and Geometries, vol. 13 (1996), 41-53. Zbl0872.58022MR97d:58063
- [31] H. OZEKI and M. TAKEUCHI, On some types of isoparametric hypersurfaces in spheres, I, Tôhoku Math. J., 27 (1975), 515-559. Zbl0359.53011
- [32] H. OZEKI and M. TAKEUCHI, On some types of isoparametric hypersurfaces in spheres, II, Tôhoku Math. J., 28 (1976), 7-55. Zbl0359.53012
- [33] J. RADON, Lineare Scharen orthogonalar Matrizen, Abh. Math. Semin. Univ. Hamburg, I (1922), 1-14. JFM48.0092.06
- [34] R.T. SMITH, Harmonic mappings of spheres, Thesis, Warwick University, 1972. Zbl0279.53055
- [35] R. TAKAGI, A class of hypersurfaces with constant principal curvatures in a sphere, J. Diff. Geom., 11 (1976), 225-233. Zbl0337.53003MR54 #13798
- [36] R. TAKAGI and T. TAKAHASHI, On the principal curvatures of homogeneous hypersurfaces in a sphere, in Differential Geometry in honour of K. Yano, Tokyo, 1972, 469-481. Zbl0244.53042MR48 #12413
- [37] J.C. WOOD, Harmonic morphisms, foliations and Gauss maps, in Complex differential geometry and nonlinear partial differential equations, Y.T. Siu ed., Contemp. Math., vol. 49, Amer. Math. Soc., Providence, R.I., 1986, 145-184. Zbl0592.53020MR87i:58045
- [38] J.C. WOOD, Harmonic morphisms and Hermitian structures on Einstein 4-manifolds, Internat. J. Math., 3 (1992), 415-439. Zbl0763.53051MR94a:58054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.