On special values of theta functions of genus two

Ehud De Shalit; Eyal Z. Goren

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 3, page 775-799
  • ISSN: 0373-0956

Abstract

top
We study a certain finitely generated multiplicative subgroup of the Hilbert class field of a quartic CM field. It consists of special values of certain theta functions of genus 2 and is analogous to the group of Siegel units. Questions of integrality of these specials values are related to the arithmetic of the Siegel moduli space.

How to cite

top

De Shalit, Ehud, and Goren, Eyal Z.. "On special values of theta functions of genus two." Annales de l'institut Fourier 47.3 (1997): 775-799. <http://eudml.org/doc/75244>.

@article{DeShalit1997,
abstract = {We study a certain finitely generated multiplicative subgroup of the Hilbert class field of a quartic CM field. It consists of special values of certain theta functions of genus 2 and is analogous to the group of Siegel units. Questions of integrality of these specials values are related to the arithmetic of the Siegel moduli space.},
author = {De Shalit, Ehud, Goren, Eyal Z.},
journal = {Annales de l'institut Fourier},
keywords = {theta functions; complex multiplication; units},
language = {eng},
number = {3},
pages = {775-799},
publisher = {Association des Annales de l'Institut Fourier},
title = {On special values of theta functions of genus two},
url = {http://eudml.org/doc/75244},
volume = {47},
year = {1997},
}

TY - JOUR
AU - De Shalit, Ehud
AU - Goren, Eyal Z.
TI - On special values of theta functions of genus two
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 3
SP - 775
EP - 799
AB - We study a certain finitely generated multiplicative subgroup of the Hilbert class field of a quartic CM field. It consists of special values of certain theta functions of genus 2 and is analogous to the group of Siegel units. Questions of integrality of these specials values are related to the arithmetic of the Siegel moduli space.
LA - eng
KW - theta functions; complex multiplication; units
UR - http://eudml.org/doc/75244
ER -

References

top
  1. [Ek] T. EKEDHAL, On Supersingular Curves and Abelian Varieties, Math. Scand. 60 (1987), 151-178. Zbl0641.14007MR88g:14037
  2. [FC] G. FALTINGS, C.-L. CHAI, Degeneration of Abelian Varieties, Springer-Verlag, Berlin-Heidelberg, 1990. Zbl0744.14031MR92d:14036
  3. [G] Eyal Z. GOREN, Ph. D. Thesis, Hebrew University of Jerusalem (1996). 
  4. [Ig] J.I. IGUSA, On Siegel Modular Forms of Genus Two (II), Am. J. Math., 86 (1964), 392-412. Zbl0133.33301MR29 #6061
  5. [KL] D. KUBERT, S. LANG, Modular Units, Springer-Verlag, Berlin-Heidelberg-New York, 1981. Zbl0492.12002MR84h:12009
  6. [L] S. LANG, Elliptic Functions, Addison-Wesley, Reading, 1973. Zbl0316.14001MR53 #13117
  7. [Oo] F. OORT, Which Abelian Surfaces are Products of Elliptic Curves? Math. Ann., 214, 1975, 35-47. Zbl0283.14007MR51 #519
  8. [Ra] K. RAMACHANDRA, Some Applications of Kronecker's Limit Formulas, Ann. Math., 80 (1964), 104-148. Zbl0142.29804MR29 #2241
  9. [Ro] G. ROBERT, Unités Elliptiques, Bull. Soc. Math. France, Mémoire, 36 (1973). Zbl0314.12006
  10. [ShTa] G. SHIMURA, Y. TANIYAMA, Complex Multiplication of Abelian Varieties and its Applications to Number Theory, Math. Soc. Japan (1991). Zbl0112.03502
  11. [Sh1] G. SHIMURA, Theta Functions with Complex Multiplication, Duke Math. J., 43 (1976), 673-696. Zbl0371.14022MR54 #12664
  12. [Sh2] G. SHIMURA, On Certain Reciprocity Laws for Theta Functions and Modular Forms, Acta Math., 141 (1978), 35-71. Zbl0402.10030MR58 #10757
  13. [Sh3] G. SHIMURA, Arithmetic of Alternating Forms and Quaternion Hermitian Forms, J. Math. Soc. Japan, 15 (1963). Zbl0121.28102MR26 #3694
  14. [Sie] C. L. SIEGEL, Lectures on Advanced Analytic Number Theory, Tata Institute for Fundamental Research (1961). 
  15. [Ta] J. TATE, Les Conjectures de Stark sur les Fonctions L d'Artin en s=0, Progress in Math. vol. 47, Birkhauser (1984). Zbl0545.12009
  16. [vdG] G. VAN DER GEER, Hilbert Modular Surfaces, Springer-Verlag, Berlin-Heidelberg-New York, 1988. Zbl0634.14022MR89c:11073
  17. [Wa] L. WASHINGTON, Introduction to Cyclotomic Fields, Springer-Verlag, 1982. Zbl0484.12001MR85g:11001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.