Class Invariants for Quartic CM Fields

Eyal Z. Goren[1]; Kristin E. Lauter[2]

  • [1] McGill University Department of Mathematics and Statistics 805 Sherbrooke St. W. Montreal H3A 2K6, QC (Canada)
  • [2] Microsoft Research One Microsoft Way Redmond, WA 98052 (USA)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 2, page 457-480
  • ISSN: 0373-0956

Abstract

top
One can define class invariants for a quartic primitive CM field K as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to K . Such constructions were given by de Shalit-Goren and Lauter. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct S -units in certain abelian extensions of a reflex field of K , where S is effectively determined by K , and to bound the primes appearing in the denominators of the Igusa class polynomials arising in the construction of genus 2 curves with CM, as conjectured by Lauter.

How to cite

top

Goren, Eyal Z., and Lauter, Kristin E.. "Class Invariants for Quartic CM Fields." Annales de l’institut Fourier 57.2 (2007): 457-480. <http://eudml.org/doc/10228>.

@article{Goren2007,
abstract = {One can define class invariants for a quartic primitive CM field $K$ as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to $K$. Such constructions were given by de Shalit-Goren and Lauter. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct $S$-units in certain abelian extensions of a reflex field of $K$, where $S$ is effectively determined by $K$, and to bound the primes appearing in the denominators of the Igusa class polynomials arising in the construction of genus 2 curves with CM, as conjectured by Lauter.},
affiliation = {McGill University Department of Mathematics and Statistics 805 Sherbrooke St. W. Montreal H3A 2K6, QC (Canada); Microsoft Research One Microsoft Way Redmond, WA 98052 (USA)},
author = {Goren, Eyal Z., Lauter, Kristin E.},
journal = {Annales de l’institut Fourier},
keywords = {Class invariant; modular form; complex multiplication; polarization; superspecial abelian variety; units; Igusa invariants; quaternion algebra; class invariant; genus 2},
language = {eng},
number = {2},
pages = {457-480},
publisher = {Association des Annales de l’institut Fourier},
title = {Class Invariants for Quartic CM Fields},
url = {http://eudml.org/doc/10228},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Goren, Eyal Z.
AU - Lauter, Kristin E.
TI - Class Invariants for Quartic CM Fields
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 457
EP - 480
AB - One can define class invariants for a quartic primitive CM field $K$ as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to $K$. Such constructions were given by de Shalit-Goren and Lauter. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct $S$-units in certain abelian extensions of a reflex field of $K$, where $S$ is effectively determined by $K$, and to bound the primes appearing in the denominators of the Igusa class polynomials arising in the construction of genus 2 curves with CM, as conjectured by Lauter.
LA - eng
KW - Class invariant; modular form; complex multiplication; polarization; superspecial abelian variety; units; Igusa invariants; quaternion algebra; class invariant; genus 2
UR - http://eudml.org/doc/10228
ER -

References

top
  1. Jan Hendrik Bruinier, Tonghai Yang, CM-values of Hilbert modular functions, Invent. Math. 163 (2006), 229-288 Zbl1093.11041MR2207018
  2. Pierre Deligne, Georgios Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math. 90 (1994), 59-79 Zbl0826.14027MR1266495
  3. T. Dokchitser, Deformations of p -divisible groups and p -descent on elliptic curves, (2000) 
  4. David R. Dorman, Singular moduli, modular polynomials, and the index of the closure of Z [ j ( τ ) ] in Q ( j ( τ ) ) , Math. Ann. 283 (1989), 177-191 Zbl0642.12014MR980592
  5. A. K. Eisenträger, K. E. Lauter, A CRT algorithm for constructing genus 2 curves over finite fields Zbl1270.11060
  6. Gerd Faltings, Ching-Li Chai, Degeneration of abelian varieties, 22 (1990), Springer-Verlag, Berlin Zbl0744.14031MR1083353
  7. E. Z. Goren, K. E. Lauter, Evil primes and superspecial moduli, International Mathematics Research Notices 2006 (2006), 1-19, Article ID 53864 Zbl1124.14042MR2250004
  8. Eyal Z. Goren, On certain reduction problems concerning abelian surfaces, Manuscripta Math. 94 (1997), 33-43 Zbl0924.14023MR1468933
  9. Benedict H. Gross, Don B. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191-220 Zbl0545.10015MR772491
  10. Tomoyoshi Ibukiyama, Toshiyuki Katsura, Frans Oort, Supersingular curves of genus two and class numbers, Compositio Math. 57 (1986), 127-152 Zbl0589.14028MR827350
  11. Jun-ichi Igusa, Arithmetic variety of moduli for genus two, Ann. of Math. (2) 72 (1960), 612-649 Zbl0122.39002MR114819
  12. Jun-ichi Igusa, On Siegel modular forms of genus two, I, Amer. J. Math. 84 (1962), 175-200 Zbl0133.33301MR141643
  13. Jun-ichi Igusa, On Siegel modular forms of genus two, II, Amer. J. Math. 86 (1964), 392-412 Zbl0133.33301MR168805
  14. Jun-ichi Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817-855 Zbl0159.50401MR229643
  15. Robert E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373-444 Zbl0796.14014MR1124982
  16. S. Lang, Complex multiplication, 255 (1983), Springer-Verlag, New York Zbl0536.14029MR713612
  17. K. E. Lauter, Primes in the denominators of Igusa class polynomials, (2003) 
  18. Qing Liu, Courbes stables de genre 2 et leur schéma de modules, Math. Ann. 295 (1993), 201-222 Zbl0819.14010MR1202389
  19. David Mumford, Abelian varieties, (1970), Published for the Tata Institute of Fundamental Research, Bombay Zbl0223.14022MR282985
  20. Frans Oort, Finite group schemes, local moduli for abelian varieties, and lifting problems, Compositio Math. 23 (1971), 265-296 Zbl0223.14024MR301026
  21. Arnold Pizer, An algorithm for computing modular forms on Γ 0 ( N ) , J. Algebra 64 (1980), 340-390 Zbl0433.10012MR579066
  22. M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), 255-335 Zbl0386.14006MR515050
  23. Fernando Rodriguez-Villegas, Explicit models of genus 2 curves with split CM, Algorithmic number theory (Leiden, 2000) 1838 (2000), 505-513, Springer, Berlin Zbl1032.11026MR1850629
  24. E. de Shalit, E. Z. Goren, On special values of theta functions of genus two, Ann. Inst. Fourier (Grenoble) 47 (1997), 775-799 Zbl0974.11027MR1465786
  25. Goro Shimura, Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, 6 (1961), The Mathematical Society of Japan, Tokyo Zbl0112.03502MR125113
  26. A.-M. Spallek, Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen, (1994) Zbl0974.11501
  27. B. K. Spearman, K. S. Williams, Relative integral bases for quartic fields over quadratic subfields, Acta Math. Hungar. 70 (1996), 185-192 Zbl0853.11090MR1374384
  28. D. Vallières, Class Invariants, (2005) 
  29. Marie-France Vignéras, Arithmétique des algèbres de quaternions, 800 (1980), Springer, Berlin Zbl0422.12008MR580949
  30. Paul van Wamelen, Examples of genus two CM curves defined over the rationals, Math. Comp. 68 (1999), 307-320 Zbl0906.14025MR1609658
  31. André Weil, Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1957 (1957), 33-53 Zbl0079.37002MR89483
  32. Annegret Weng, Constructing hyperelliptic curves of genus 2 suitable for cryptography, Math. Comp. 72 (2003), 435-458 (electronic) Zbl1013.11023MR1933830

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.