Class Invariants for Quartic CM Fields
Eyal Z. Goren[1]; Kristin E. Lauter[2]
- [1] McGill University Department of Mathematics and Statistics 805 Sherbrooke St. W. Montreal H3A 2K6, QC (Canada)
- [2] Microsoft Research One Microsoft Way Redmond, WA 98052 (USA)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 2, page 457-480
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGoren, Eyal Z., and Lauter, Kristin E.. "Class Invariants for Quartic CM Fields." Annales de l’institut Fourier 57.2 (2007): 457-480. <http://eudml.org/doc/10228>.
@article{Goren2007,
abstract = {One can define class invariants for a quartic primitive CM field $K$ as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to $K$. Such constructions were given by de Shalit-Goren and Lauter. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct $S$-units in certain abelian extensions of a reflex field of $K$, where $S$ is effectively determined by $K$, and to bound the primes appearing in the denominators of the Igusa class polynomials arising in the construction of genus 2 curves with CM, as conjectured by Lauter.},
affiliation = {McGill University Department of Mathematics and Statistics 805 Sherbrooke St. W. Montreal H3A 2K6, QC (Canada); Microsoft Research One Microsoft Way Redmond, WA 98052 (USA)},
author = {Goren, Eyal Z., Lauter, Kristin E.},
journal = {Annales de l’institut Fourier},
keywords = {Class invariant; modular form; complex multiplication; polarization; superspecial abelian variety; units; Igusa invariants; quaternion algebra; class invariant; genus 2},
language = {eng},
number = {2},
pages = {457-480},
publisher = {Association des Annales de l’institut Fourier},
title = {Class Invariants for Quartic CM Fields},
url = {http://eudml.org/doc/10228},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Goren, Eyal Z.
AU - Lauter, Kristin E.
TI - Class Invariants for Quartic CM Fields
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 2
SP - 457
EP - 480
AB - One can define class invariants for a quartic primitive CM field $K$ as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to $K$. Such constructions were given by de Shalit-Goren and Lauter. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct $S$-units in certain abelian extensions of a reflex field of $K$, where $S$ is effectively determined by $K$, and to bound the primes appearing in the denominators of the Igusa class polynomials arising in the construction of genus 2 curves with CM, as conjectured by Lauter.
LA - eng
KW - Class invariant; modular form; complex multiplication; polarization; superspecial abelian variety; units; Igusa invariants; quaternion algebra; class invariant; genus 2
UR - http://eudml.org/doc/10228
ER -
References
top- Jan Hendrik Bruinier, Tonghai Yang, CM-values of Hilbert modular functions, Invent. Math. 163 (2006), 229-288 Zbl1093.11041MR2207018
- Pierre Deligne, Georgios Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math. 90 (1994), 59-79 Zbl0826.14027MR1266495
- T. Dokchitser, Deformations of -divisible groups and -descent on elliptic curves, (2000)
- David R. Dorman, Singular moduli, modular polynomials, and the index of the closure of in , Math. Ann. 283 (1989), 177-191 Zbl0642.12014MR980592
- A. K. Eisenträger, K. E. Lauter, A CRT algorithm for constructing genus 2 curves over finite fields Zbl1270.11060
- Gerd Faltings, Ching-Li Chai, Degeneration of abelian varieties, 22 (1990), Springer-Verlag, Berlin Zbl0744.14031MR1083353
- E. Z. Goren, K. E. Lauter, Evil primes and superspecial moduli, International Mathematics Research Notices 2006 (2006), 1-19, Article ID 53864 Zbl1124.14042MR2250004
- Eyal Z. Goren, On certain reduction problems concerning abelian surfaces, Manuscripta Math. 94 (1997), 33-43 Zbl0924.14023MR1468933
- Benedict H. Gross, Don B. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191-220 Zbl0545.10015MR772491
- Tomoyoshi Ibukiyama, Toshiyuki Katsura, Frans Oort, Supersingular curves of genus two and class numbers, Compositio Math. 57 (1986), 127-152 Zbl0589.14028MR827350
- Jun-ichi Igusa, Arithmetic variety of moduli for genus two, Ann. of Math. (2) 72 (1960), 612-649 Zbl0122.39002MR114819
- Jun-ichi Igusa, On Siegel modular forms of genus two, I, Amer. J. Math. 84 (1962), 175-200 Zbl0133.33301MR141643
- Jun-ichi Igusa, On Siegel modular forms of genus two, II, Amer. J. Math. 86 (1964), 392-412 Zbl0133.33301MR168805
- Jun-ichi Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817-855 Zbl0159.50401MR229643
- Robert E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373-444 Zbl0796.14014MR1124982
- S. Lang, Complex multiplication, 255 (1983), Springer-Verlag, New York Zbl0536.14029MR713612
- K. E. Lauter, Primes in the denominators of Igusa class polynomials, (2003)
- Qing Liu, Courbes stables de genre et leur schéma de modules, Math. Ann. 295 (1993), 201-222 Zbl0819.14010MR1202389
- David Mumford, Abelian varieties, (1970), Published for the Tata Institute of Fundamental Research, Bombay Zbl0223.14022MR282985
- Frans Oort, Finite group schemes, local moduli for abelian varieties, and lifting problems, Compositio Math. 23 (1971), 265-296 Zbl0223.14024MR301026
- Arnold Pizer, An algorithm for computing modular forms on , J. Algebra 64 (1980), 340-390 Zbl0433.10012MR579066
- M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), 255-335 Zbl0386.14006MR515050
- Fernando Rodriguez-Villegas, Explicit models of genus 2 curves with split CM, Algorithmic number theory (Leiden, 2000) 1838 (2000), 505-513, Springer, Berlin Zbl1032.11026MR1850629
- E. de Shalit, E. Z. Goren, On special values of theta functions of genus two, Ann. Inst. Fourier (Grenoble) 47 (1997), 775-799 Zbl0974.11027MR1465786
- Goro Shimura, Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, 6 (1961), The Mathematical Society of Japan, Tokyo Zbl0112.03502MR125113
- A.-M. Spallek, Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen, (1994) Zbl0974.11501
- B. K. Spearman, K. S. Williams, Relative integral bases for quartic fields over quadratic subfields, Acta Math. Hungar. 70 (1996), 185-192 Zbl0853.11090MR1374384
- D. Vallières, Class Invariants, (2005)
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, 800 (1980), Springer, Berlin Zbl0422.12008MR580949
- Paul van Wamelen, Examples of genus two CM curves defined over the rationals, Math. Comp. 68 (1999), 307-320 Zbl0906.14025MR1609658
- André Weil, Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1957 (1957), 33-53 Zbl0079.37002MR89483
- Annegret Weng, Constructing hyperelliptic curves of genus 2 suitable for cryptography, Math. Comp. 72 (2003), 435-458 (electronic) Zbl1013.11023MR1933830
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.