Extremal projectors in the semi-classical case
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 5, page 1335-1343
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topChemla, Sophie. "Extremal projectors in the semi-classical case." Annales de l'institut Fourier 47.5 (1997): 1335-1343. <http://eudml.org/doc/75265>.
@article{Chemla1997,
abstract = {Using extremal projectors, Zhelobenko solved extremal equations in a generic Verma module of a complex semi-simple Lie algebra. We will solve similar equations in the semi-classical case. Our proof will be geometric. In the appendix, we give a factorization for the extremal projector of the Virasoro algebra in the semi-classical case.},
author = {Chemla, Sophie},
journal = {Annales de l'institut Fourier},
keywords = {extremal projectors; semisimple Lie algebras; Verma module; Virasoro algebra},
language = {eng},
number = {5},
pages = {1335-1343},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extremal projectors in the semi-classical case},
url = {http://eudml.org/doc/75265},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Chemla, Sophie
TI - Extremal projectors in the semi-classical case
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 5
SP - 1335
EP - 1343
AB - Using extremal projectors, Zhelobenko solved extremal equations in a generic Verma module of a complex semi-simple Lie algebra. We will solve similar equations in the semi-classical case. Our proof will be geometric. In the appendix, we give a factorization for the extremal projector of the Virasoro algebra in the semi-classical case.
LA - eng
KW - extremal projectors; semisimple Lie algebras; Verma module; Virasoro algebra
UR - http://eudml.org/doc/75265
ER -
References
top- [AST] R.M. ASHEROVA, Y.F. SMIRNOV, V.N. TOLSTOI, Description of a class of projection operators for semi-simple complex Lie algebras, Matem. Zametki, 26, No. 1 (1979), 15-25. Zbl0414.17005MR81h:17009
- [Z1] D.P. ZHELOBENKO, An introduction to the theory of S-algebras over reductive Lie algebras, Representations of infinite Lie groups and algebras, Gordon and Breach, New York, 1986. Zbl0726.17009
- [Z2] D.P. ZHELOBENKO, Extremal cocycles of Weyl groups, Functional analysis and its applications, 21, No 3 (1987), 11-21. Zbl0633.17008MR89g:17007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.