Area integral estimates for higher order elliptic equations and systems
Björn E. J. Dahlberg; Carlos E. Kenig; Jill Pipher; G. C. Verchota
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 5, page 1425-1461
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDahlberg, Björn E. J., et al. "Area integral estimates for higher order elliptic equations and systems." Annales de l'institut Fourier 47.5 (1997): 1425-1461. <http://eudml.org/doc/75269>.
@article{Dahlberg1997,
abstract = {Let $L$ be an elliptic system of higher order homogeneous partial differential operators. We establish in this article the equivalence in $L^p$ norm between the maximal function and the square function of solutions to $L$ in Lipschitz domains. Several applications of this result are discussed.},
author = {Dahlberg, Björn E. J., Kenig, Carlos E., Pipher, Jill, Verchota, G. C.},
journal = {Annales de l'institut Fourier},
keywords = {elliptic symmetric -systems; nontangential maximal function; square function; tangential derivatives},
language = {eng},
number = {5},
pages = {1425-1461},
publisher = {Association des Annales de l'Institut Fourier},
title = {Area integral estimates for higher order elliptic equations and systems},
url = {http://eudml.org/doc/75269},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Dahlberg, Björn E. J.
AU - Kenig, Carlos E.
AU - Pipher, Jill
AU - Verchota, G. C.
TI - Area integral estimates for higher order elliptic equations and systems
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 5
SP - 1425
EP - 1461
AB - Let $L$ be an elliptic system of higher order homogeneous partial differential operators. We establish in this article the equivalence in $L^p$ norm between the maximal function and the square function of solutions to $L$ in Lipschitz domains. Several applications of this result are discussed.
LA - eng
KW - elliptic symmetric -systems; nontangential maximal function; square function; tangential derivatives
UR - http://eudml.org/doc/75269
ER -
References
top- [1] V. ADOLFSSON and J. PIPHER, The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains (preprint). Zbl0934.35038
- [2] S. AGMON, Lectures on elliptic boundary value problems, D. Van Nostrand, Princeton, NJ, 1965. Zbl0142.37401MR31 #2504
- [3] S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II., Comm. Pure Appl. Math., 17 (1964), 35-92. Zbl0123.28706MR28 #5252
- [4] R.M. BROWN and Z. SHEN, Boundary value problems in Lipschitz cylinders for three dimensional parabolic systems, Rivista Mat. Ibero., 8, no 3 (1992), 271-303. Zbl0782.35033MR94b:35133
- [5] R.M. BROWN and Z. SHEN, Estimates for the Stokes operator in Lipschitz domains, Ind. U. Math. J., 44, no 4 (1995), 1183-1206. Zbl0858.35098MR97c:35152
- [6] D. BURKHOLDER and R. GUNDY, Distribution function inequalities for the area integral, Studia Math., 44 (1972), 527-544. Zbl0219.31009MR49 #5309
- [7] M.D. CHOI and T.Y. LAM, An old question of Hilbert, Queen's papers on pure and applied math 46 (1977), Queen's University Kingston, Ontario, 385-405. Zbl0382.12010MR58 #16503
- [8] R.R. COIFMAN, A. MCINTOSH and Y. MEYER, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Ann. of Math., 116 (1982), 361-387. Zbl0497.42012MR84m:42027
- [9] B.E.J. DAHLBERG, On the Poisson integral for Lipschitz and C1 domains, Studia Math., 66 (1979), 13-24. Zbl0422.31008MR81g:31007
- [10] B.E.J. DAHLBERG, Weighted norm inequalities for the Lusin area integral and the non-tangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math., 67 (1980), 297-314. Zbl0449.31002MR82f:31003
- [11] B.E.J. DAHLBERG, Poisson semigroups and singular integrals, Proc. A.M.S., 97, no 1 (1986), 41-48. Zbl0595.31009MR87g:42035
- [12] B.E.J. DAHLBERG, D.S. JERISON and C.E. KENIG, Area integral estimates for elliptic differential operators with nonsmooth coefficients, Arkiv. Mat., 22 (1984), 97-108. Zbl0537.35025MR85h:35021
- [13] B.E.J. DAHLBERG and C.E. KENIG, Lp estimates for the 3-dimensional systems of elastostatics on Lipschitz domains, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, (1990), 621-634. Zbl0702.35076MR91h:35053
- [14] B.E.J. DAHLBERG, C.E. KENIG and G. VERCHOTA, The Dirichlet problem for the biharmonic equation in a Lipschitz domain, Ann. Inst. Fourier, Grenoble, 36-3 (1986), 109-135. Zbl0589.35040MR88a:35070
- [15] A. DOUGLIS and L. NIRENBERG, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8 (1955), 503-538. Zbl0066.08002MR17,743b
- [16] C. FEFFERMAN and E. STEIN, HP spaces of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
- [17] G.H. HARDY, J.E. LITTLEWOOD and G. PÓLYA, Inequalities, 2nd ed, Cambridge University Press, Cambridge, 1988. Zbl0010.10703MR89d:26016JFM60.0169.01
- [18] S. HOFMANN and J.L. LEWIS, L2 solvability and representation by caloric layer potential in time-varying domains, Annals Math., 144 (1996), 349-420. Zbl0867.35037MR97h:35072
- [19] D.S. JERISON and C.E. KENIG, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), 161-219. Zbl0832.35034MR96b:35042
- [20] F. JOHN, Plane waves and spherical means, Interscience Publishers, Inc., New York, 1955. Zbl0067.32101
- [21] C.E. KENIG and E.M. STEIN, Unpublished, communicated by C. E. Kenig.
- [22] C. LI, A. MCINTOSH and S. SEMMES, Convolution singular integrals on Lipschitz surfaces, Journ. A.M.S., 5 (1992), 455-481. Zbl0763.42009MR93b:42029
- [23] T.S. MOTZKIN, The arithmetic - geometric inequality, Inequalities (O. Shisha, ed), Academic Press, New York, 1967, 205-224.
- [24] J. NECAS, Sur les domaines du type N, Czechoslovak. Math. J., 12 (1962), 274-287. Zbl0106.27001MR27 #2709
- [25] J. PIPHER and G. VERCHOTA, Area integral results for the biharmonic operator in Lipschitz domains, Trans. A. M. S., 327, no 2 (1991), 903-917. Zbl0774.35022MR92a:35052
- [26] J. PIPHER and G. VERCHOTA, The maximum principle for biharmonic functions in Lipschitz and C1 domains, Commentarii Math. Helvetici, 68 (1993), 385-414. Zbl0794.31005MR94j:35030
- [27] J. PIPHER and G. VERCHOTA, Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators, Ann. of Math., 142 (1995), 1-38. Zbl0878.35035MR96g:35052
- [28] J. PIPHER and G. VERCHOTA, Maximum principles for the polyharmonic equation on Lipschitz domains, Potential Analysis, 4, no 6 (1995), 615-636. Zbl0844.35013MR96i:35021
- [29] Z. SHEN, Resolvent estimates in Lp for elliptic systems in Lipschitz domains, J. Funct. Anal., 133, no 1 (1995), 224-251. Zbl0853.35015MR96h:35045
- [30] E.M. STEIN, Singular Integrals and Differentiability Properties of functions, Princeton University Press, Princeton, N.J., 1970. Zbl0207.13501MR44 #7280
- [31] G. VERCHOTA, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59, no 3 (1984), 572-611. Zbl0589.31005MR86e:35038
- [32] G. VERCHOTA, The Dirichlet problem for the polyharmonic equation in Lipschitz domains, Ind. Math. J., 39, no 3 (1990). Zbl0724.31005MR91k:35073
- [33] G. VERCHOTA, Potential for the Dirichlet problem in Lipschitz domains, Potential Theory - ICPT94 (Král et al., eds.), Walter de Gruyter & Co., Berlin (1996), 167-187. Zbl0858.35033MR97f:35041
- [34] G.C. VERCHOTA and A.L. VOGEL, Nonsymmetric systems on nonsmooth planar domains, to appear, Trans. A.M.S.. Zbl0892.35055
- [35] G.C. VERCHOTA and A.L. VOGEL, Nonsymmetric systems and area integral estimates, in preparation. Zbl0941.35022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.