Area integral estimates for higher order elliptic equations and systems

Björn E. J. Dahlberg; Carlos E. Kenig; Jill Pipher; G. C. Verchota

Annales de l'institut Fourier (1997)

  • Volume: 47, Issue: 5, page 1425-1461
  • ISSN: 0373-0956

Abstract

top
Let L be an elliptic system of higher order homogeneous partial differential operators. We establish in this article the equivalence in L p norm between the maximal function and the square function of solutions to L in Lipschitz domains. Several applications of this result are discussed.

How to cite

top

Dahlberg, Björn E. J., et al. "Area integral estimates for higher order elliptic equations and systems." Annales de l'institut Fourier 47.5 (1997): 1425-1461. <http://eudml.org/doc/75269>.

@article{Dahlberg1997,
abstract = {Let $L$ be an elliptic system of higher order homogeneous partial differential operators. We establish in this article the equivalence in $L^p$ norm between the maximal function and the square function of solutions to $L$ in Lipschitz domains. Several applications of this result are discussed.},
author = {Dahlberg, Björn E. J., Kenig, Carlos E., Pipher, Jill, Verchota, G. C.},
journal = {Annales de l'institut Fourier},
keywords = {elliptic symmetric -systems; nontangential maximal function; square function; tangential derivatives},
language = {eng},
number = {5},
pages = {1425-1461},
publisher = {Association des Annales de l'Institut Fourier},
title = {Area integral estimates for higher order elliptic equations and systems},
url = {http://eudml.org/doc/75269},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Dahlberg, Björn E. J.
AU - Kenig, Carlos E.
AU - Pipher, Jill
AU - Verchota, G. C.
TI - Area integral estimates for higher order elliptic equations and systems
JO - Annales de l'institut Fourier
PY - 1997
PB - Association des Annales de l'Institut Fourier
VL - 47
IS - 5
SP - 1425
EP - 1461
AB - Let $L$ be an elliptic system of higher order homogeneous partial differential operators. We establish in this article the equivalence in $L^p$ norm between the maximal function and the square function of solutions to $L$ in Lipschitz domains. Several applications of this result are discussed.
LA - eng
KW - elliptic symmetric -systems; nontangential maximal function; square function; tangential derivatives
UR - http://eudml.org/doc/75269
ER -

References

top
  1. [1] V. ADOLFSSON and J. PIPHER, The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains (preprint). Zbl0934.35038
  2. [2] S. AGMON, Lectures on elliptic boundary value problems, D. Van Nostrand, Princeton, NJ, 1965. Zbl0142.37401MR31 #2504
  3. [3] S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II., Comm. Pure Appl. Math., 17 (1964), 35-92. Zbl0123.28706MR28 #5252
  4. [4] R.M. BROWN and Z. SHEN, Boundary value problems in Lipschitz cylinders for three dimensional parabolic systems, Rivista Mat. Ibero., 8, no 3 (1992), 271-303. Zbl0782.35033MR94b:35133
  5. [5] R.M. BROWN and Z. SHEN, Estimates for the Stokes operator in Lipschitz domains, Ind. U. Math. J., 44, no 4 (1995), 1183-1206. Zbl0858.35098MR97c:35152
  6. [6] D. BURKHOLDER and R. GUNDY, Distribution function inequalities for the area integral, Studia Math., 44 (1972), 527-544. Zbl0219.31009MR49 #5309
  7. [7] M.D. CHOI and T.Y. LAM, An old question of Hilbert, Queen's papers on pure and applied math 46 (1977), Queen's University Kingston, Ontario, 385-405. Zbl0382.12010MR58 #16503
  8. [8] R.R. COIFMAN, A. MCINTOSH and Y. MEYER, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Ann. of Math., 116 (1982), 361-387. Zbl0497.42012MR84m:42027
  9. [9] B.E.J. DAHLBERG, On the Poisson integral for Lipschitz and C1 domains, Studia Math., 66 (1979), 13-24. Zbl0422.31008MR81g:31007
  10. [10] B.E.J. DAHLBERG, Weighted norm inequalities for the Lusin area integral and the non-tangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math., 67 (1980), 297-314. Zbl0449.31002MR82f:31003
  11. [11] B.E.J. DAHLBERG, Poisson semigroups and singular integrals, Proc. A.M.S., 97, no 1 (1986), 41-48. Zbl0595.31009MR87g:42035
  12. [12] B.E.J. DAHLBERG, D.S. JERISON and C.E. KENIG, Area integral estimates for elliptic differential operators with nonsmooth coefficients, Arkiv. Mat., 22 (1984), 97-108. Zbl0537.35025MR85h:35021
  13. [13] B.E.J. DAHLBERG and C.E. KENIG, Lp estimates for the 3-dimensional systems of elastostatics on Lipschitz domains, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, (1990), 621-634. Zbl0702.35076MR91h:35053
  14. [14] B.E.J. DAHLBERG, C.E. KENIG and G. VERCHOTA, The Dirichlet problem for the biharmonic equation in a Lipschitz domain, Ann. Inst. Fourier, Grenoble, 36-3 (1986), 109-135. Zbl0589.35040MR88a:35070
  15. [15] A. DOUGLIS and L. NIRENBERG, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8 (1955), 503-538. Zbl0066.08002MR17,743b
  16. [16] C. FEFFERMAN and E. STEIN, HP spaces of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
  17. [17] G.H. HARDY, J.E. LITTLEWOOD and G. PÓLYA, Inequalities, 2nd ed, Cambridge University Press, Cambridge, 1988. Zbl0010.10703MR89d:26016JFM60.0169.01
  18. [18] S. HOFMANN and J.L. LEWIS, L2 solvability and representation by caloric layer potential in time-varying domains, Annals Math., 144 (1996), 349-420. Zbl0867.35037MR97h:35072
  19. [19] D.S. JERISON and C.E. KENIG, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), 161-219. Zbl0832.35034MR96b:35042
  20. [20] F. JOHN, Plane waves and spherical means, Interscience Publishers, Inc., New York, 1955. Zbl0067.32101
  21. [21] C.E. KENIG and E.M. STEIN, Unpublished, communicated by C. E. Kenig. 
  22. [22] C. LI, A. MCINTOSH and S. SEMMES, Convolution singular integrals on Lipschitz surfaces, Journ. A.M.S., 5 (1992), 455-481. Zbl0763.42009MR93b:42029
  23. [23] T.S. MOTZKIN, The arithmetic - geometric inequality, Inequalities (O. Shisha, ed), Academic Press, New York, 1967, 205-224. 
  24. [24] J. NECAS, Sur les domaines du type N, Czechoslovak. Math. J., 12 (1962), 274-287. Zbl0106.27001MR27 #2709
  25. [25] J. PIPHER and G. VERCHOTA, Area integral results for the biharmonic operator in Lipschitz domains, Trans. A. M. S., 327, no 2 (1991), 903-917. Zbl0774.35022MR92a:35052
  26. [26] J. PIPHER and G. VERCHOTA, The maximum principle for biharmonic functions in Lipschitz and C1 domains, Commentarii Math. Helvetici, 68 (1993), 385-414. Zbl0794.31005MR94j:35030
  27. [27] J. PIPHER and G. VERCHOTA, Dilation invariant estimates and the boundary G&#229;rding inequality for higher order elliptic operators, Ann. of Math., 142 (1995), 1-38. Zbl0878.35035MR96g:35052
  28. [28] J. PIPHER and G. VERCHOTA, Maximum principles for the polyharmonic equation on Lipschitz domains, Potential Analysis, 4, no 6 (1995), 615-636. Zbl0844.35013MR96i:35021
  29. [29] Z. SHEN, Resolvent estimates in Lp for elliptic systems in Lipschitz domains, J. Funct. Anal., 133, no 1 (1995), 224-251. Zbl0853.35015MR96h:35045
  30. [30] E.M. STEIN, Singular Integrals and Differentiability Properties of functions, Princeton University Press, Princeton, N.J., 1970. Zbl0207.13501MR44 #7280
  31. [31] G. VERCHOTA, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., 59, no 3 (1984), 572-611. Zbl0589.31005MR86e:35038
  32. [32] G. VERCHOTA, The Dirichlet problem for the polyharmonic equation in Lipschitz domains, Ind. Math. J., 39, no 3 (1990). Zbl0724.31005MR91k:35073
  33. [33] G. VERCHOTA, Potential for the Dirichlet problem in Lipschitz domains, Potential Theory - ICPT94 (Král et al., eds.), Walter de Gruyter & Co., Berlin (1996), 167-187. Zbl0858.35033MR97f:35041
  34. [34] G.C. VERCHOTA and A.L. VOGEL, Nonsymmetric systems on nonsmooth planar domains, to appear, Trans. A.M.S.. Zbl0892.35055
  35. [35] G.C. VERCHOTA and A.L. VOGEL, Nonsymmetric systems and area integral estimates, in preparation. Zbl0941.35022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.