The Dirichlet problem for the biharmonic equation in a Lipschitz domain

Björn E. J. Dahlberg; C. E. Kenig; G. C. Verchota

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 3, page 109-135
  • ISSN: 0373-0956

Abstract

top
In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator , on an arbitrary bounded Lipschitz domain in . We establish existence and uniqueness results when the boundary values have first derivatives in , and the normal derivative is in . The resulting solution takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of is shown to be in .

How to cite

top

Dahlberg, Björn E. J., Kenig, C. E., and Verchota, G. C.. "The Dirichlet problem for the biharmonic equation in a Lipschitz domain." Annales de l'institut Fourier 36.3 (1986): 109-135. <http://eudml.org/doc/74720>.

@article{Dahlberg1986,
abstract = {In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator $\Delta ^2$, on an arbitrary bounded Lipschitz domain $D$ in $\{\bf R\}^n$. We establish existence and uniqueness results when the boundary values have first derivatives in $L^2(\partial D)$, and the normal derivative is in $L^2(\partial D)$. The resulting solution $u$ takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of $\nabla u$ is shown to be in $L^2(\partial D)$.},
author = {Dahlberg, Björn E. J., Kenig, C. E., Verchota, G. C.},
journal = {Annales de l'institut Fourier},
keywords = {optimal estimates; Dirichlet problem; biharmonic operator; Lipschitz domain; non-tangential convergence},
language = {eng},
number = {3},
pages = {109-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Dirichlet problem for the biharmonic equation in a Lipschitz domain},
url = {http://eudml.org/doc/74720},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Dahlberg, Björn E. J.
AU - Kenig, C. E.
AU - Verchota, G. C.
TI - The Dirichlet problem for the biharmonic equation in a Lipschitz domain
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 3
SP - 109
EP - 135
AB - In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator $\Delta ^2$, on an arbitrary bounded Lipschitz domain $D$ in ${\bf R}^n$. We establish existence and uniqueness results when the boundary values have first derivatives in $L^2(\partial D)$, and the normal derivative is in $L^2(\partial D)$. The resulting solution $u$ takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of $\nabla u$ is shown to be in $L^2(\partial D)$.
LA - eng
KW - optimal estimates; Dirichlet problem; biharmonic operator; Lipschitz domain; non-tangential convergence
UR - http://eudml.org/doc/74720
ER -

References

top
  1. [1] J. COHEN and J. GOSSELIN, The Dirichlet problem for the biharmonic equation in a C1 domain in the plane, Indiana U. Math. J., Vol 32, 5 (1983), 635-685. Zbl0534.31003MR85b:31004
  2. [2] R. COIFMAN, A. MC INTOSH and Y. MEYER, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Annals of Math., 116 (1982), 361-387. Zbl0497.42012MR84m:42027
  3. [3] R. COIFMAN and Y. MEYER, Au delà des opérateurs pseudo-differentiels, Asterisque, 57 (1978). Zbl0483.35082MR81b:47061
  4. [4] A. CORDOBA and C. FEFFERMAN, A weighted norm inequality for singular integrals, Studia Math., 57 (1976), 97-101. Zbl0356.44003MR54 #8132
  5. [5] B. DAHLBERG, On estimates of harmonic measure, Arch. for Rational Mech. and Anal., 65 (1977), 272-288. Zbl0406.28009MR57 #6470
  6. [6] B. DAHLBERG, On the Poisson integral for Lipschitz and C1 domains, Studia Math., 66 (1979), 13-24. Zbl0422.31008MR81g:31007
  7. [7] B. DAHLBERG, Weighted norm inequalities for the Lusin area integral and the non-tangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math., 67 (1980), 297-314. Zbl0449.31002MR82f:31003
  8. [8] B. DAHLBERG and C. KENIG, Hardy spaces and the Lp Neumann problem for Laplace's equation in a Lipschitz domain, to appear in Annals of Math. Zbl0658.35027
  9. [9] B. DAHLBERG and C. KENIG, Area integral estimate for higher order boundary value problems on Lipschitz domains, in preparation. Zbl0702.35076
  10. [10] C. FEFFERMAN and E. STEIN, Hp space of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
  11. [11] D. JERISON and C. KENIG, The dirichlet problem in non-smooth domains, Annals of Math., 113 (1981), 367-382. Zbl0434.35027MR84j:35076
  12. [12] D. JERISON and C. KENIG, The Neumann problem on Lipschitz domain, Bull AMS, Vol 4 (1981), 103-207. Zbl0471.35026MR84a:35064
  13. [13] D. JERISON and C. KENIG, Boundary value problems on Lipschitz domain, MAA Studies in Mathematics, vol 23, Studies in Partial differential Equations, W. Littmann, editor (1982), 1-68. Zbl0529.31007MR85f:35057
  14. [14] C. KENIG, Recent progress on boundary values problems on Lipschitz domain, Proc. of Symp. in Pure Math., Vol 43 (1985), 175-205. Zbl0593.35038MR87e:35029
  15. [15] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 192 (1974), 261-274. Zbl0289.26010MR49 #5275
  16. [16] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. 
  17. [17] E. STEIN and G. WEISS, On the theory of harmonic functions of several variables, I, Acta Math., 103 (1960), 25-62. Zbl0097.28501MR22 #12315
  18. [18] G.C. VERCHOTA, Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains, Thesis, University of Minnesota (1982), J. of Functional Analysis, 59 (1984), 572-611. Zbl0589.31005
  19. [19] G.C. VERCHOTA, The Dirichlet problem for biharmonic functions in C1 domains, preprint. Zbl0644.35039

NotesEmbed ?

top

You must be logged in to post comments.