The Dirichlet problem for the biharmonic equation in a Lipschitz domain

Björn E. J. Dahlberg; C. E. Kenig; G. C. Verchota

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 3, page 109-135
  • ISSN: 0373-0956

Abstract

top
In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator Δ 2 , on an arbitrary bounded Lipschitz domain D in R n . We establish existence and uniqueness results when the boundary values have first derivatives in L 2 ( D ) , and the normal derivative is in L 2 ( D ) . The resulting solution u takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of u is shown to be in L 2 ( D ) .

How to cite

top

Dahlberg, Björn E. J., Kenig, C. E., and Verchota, G. C.. "The Dirichlet problem for the biharmonic equation in a Lipschitz domain." Annales de l'institut Fourier 36.3 (1986): 109-135. <http://eudml.org/doc/74720>.

@article{Dahlberg1986,
abstract = {In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator $\Delta ^2$, on an arbitrary bounded Lipschitz domain $D$ in $\{\bf R\}^n$. We establish existence and uniqueness results when the boundary values have first derivatives in $L^2(\partial D)$, and the normal derivative is in $L^2(\partial D)$. The resulting solution $u$ takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of $\nabla u$ is shown to be in $L^2(\partial D)$.},
author = {Dahlberg, Björn E. J., Kenig, C. E., Verchota, G. C.},
journal = {Annales de l'institut Fourier},
keywords = {optimal estimates; Dirichlet problem; biharmonic operator; Lipschitz domain; non-tangential convergence},
language = {eng},
number = {3},
pages = {109-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Dirichlet problem for the biharmonic equation in a Lipschitz domain},
url = {http://eudml.org/doc/74720},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Dahlberg, Björn E. J.
AU - Kenig, C. E.
AU - Verchota, G. C.
TI - The Dirichlet problem for the biharmonic equation in a Lipschitz domain
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 3
SP - 109
EP - 135
AB - In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator $\Delta ^2$, on an arbitrary bounded Lipschitz domain $D$ in ${\bf R}^n$. We establish existence and uniqueness results when the boundary values have first derivatives in $L^2(\partial D)$, and the normal derivative is in $L^2(\partial D)$. The resulting solution $u$ takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of $\nabla u$ is shown to be in $L^2(\partial D)$.
LA - eng
KW - optimal estimates; Dirichlet problem; biharmonic operator; Lipschitz domain; non-tangential convergence
UR - http://eudml.org/doc/74720
ER -

References

top
  1. [1] J. COHEN and J. GOSSELIN, The Dirichlet problem for the biharmonic equation in a C1 domain in the plane, Indiana U. Math. J., Vol 32, 5 (1983), 635-685. Zbl0534.31003MR85b:31004
  2. [2] R. COIFMAN, A. MC INTOSH and Y. MEYER, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Annals of Math., 116 (1982), 361-387. Zbl0497.42012MR84m:42027
  3. [3] R. COIFMAN and Y. MEYER, Au delà des opérateurs pseudo-differentiels, Asterisque, 57 (1978). Zbl0483.35082MR81b:47061
  4. [4] A. CORDOBA and C. FEFFERMAN, A weighted norm inequality for singular integrals, Studia Math., 57 (1976), 97-101. Zbl0356.44003MR54 #8132
  5. [5] B. DAHLBERG, On estimates of harmonic measure, Arch. for Rational Mech. and Anal., 65 (1977), 272-288. Zbl0406.28009MR57 #6470
  6. [6] B. DAHLBERG, On the Poisson integral for Lipschitz and C1 domains, Studia Math., 66 (1979), 13-24. Zbl0422.31008MR81g:31007
  7. [7] B. DAHLBERG, Weighted norm inequalities for the Lusin area integral and the non-tangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math., 67 (1980), 297-314. Zbl0449.31002MR82f:31003
  8. [8] B. DAHLBERG and C. KENIG, Hardy spaces and the Lp Neumann problem for Laplace's equation in a Lipschitz domain, to appear in Annals of Math. Zbl0658.35027
  9. [9] B. DAHLBERG and C. KENIG, Area integral estimate for higher order boundary value problems on Lipschitz domains, in preparation. Zbl0702.35076
  10. [10] C. FEFFERMAN and E. STEIN, Hp space of several variables, Acta Math., 129 (1972), 137-193. Zbl0257.46078MR56 #6263
  11. [11] D. JERISON and C. KENIG, The dirichlet problem in non-smooth domains, Annals of Math., 113 (1981), 367-382. Zbl0434.35027MR84j:35076
  12. [12] D. JERISON and C. KENIG, The Neumann problem on Lipschitz domain, Bull AMS, Vol 4 (1981), 103-207. Zbl0471.35026MR84a:35064
  13. [13] D. JERISON and C. KENIG, Boundary value problems on Lipschitz domain, MAA Studies in Mathematics, vol 23, Studies in Partial differential Equations, W. Littmann, editor (1982), 1-68. Zbl0529.31007MR85f:35057
  14. [14] C. KENIG, Recent progress on boundary values problems on Lipschitz domain, Proc. of Symp. in Pure Math., Vol 43 (1985), 175-205. Zbl0593.35038MR87e:35029
  15. [15] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 192 (1974), 261-274. Zbl0289.26010MR49 #5275
  16. [16] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. 
  17. [17] E. STEIN and G. WEISS, On the theory of harmonic functions of several variables, I, Acta Math., 103 (1960), 25-62. Zbl0097.28501MR22 #12315
  18. [18] G.C. VERCHOTA, Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains, Thesis, University of Minnesota (1982), J. of Functional Analysis, 59 (1984), 572-611. Zbl0589.31005
  19. [19] G.C. VERCHOTA, The Dirichlet problem for biharmonic functions in C1 domains, preprint. Zbl0644.35039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.