Une caractérisation des formes symplectiques
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 1, page 265-280
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSévennec, Bruno. "Une caractérisation des formes symplectiques." Annales de l'institut Fourier 48.1 (1998): 265-280. <http://eudml.org/doc/75279>.
@article{Sévennec1998,
abstract = {On montre qu’une 2-forme non nulle sur une variété $M$, telle que le pseudogroupe des difféomorphismes locaux la préservant soit transitif sur le fibré des directions tangentes, est symplectique si la dimension de $M$ n’est pas $6$. De plus, il y a un contre-exemple en dimension 6, dont on montre qu’il est essentiellement unique.},
author = {Sévennec, Bruno},
journal = {Annales de l'institut Fourier},
keywords = {symplectic form; pseudogroup; transitive action},
language = {fre},
number = {1},
pages = {265-280},
publisher = {Association des Annales de l'Institut Fourier},
title = {Une caractérisation des formes symplectiques},
url = {http://eudml.org/doc/75279},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Sévennec, Bruno
TI - Une caractérisation des formes symplectiques
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 265
EP - 280
AB - On montre qu’une 2-forme non nulle sur une variété $M$, telle que le pseudogroupe des difféomorphismes locaux la préservant soit transitif sur le fibré des directions tangentes, est symplectique si la dimension de $M$ n’est pas $6$. De plus, il y a un contre-exemple en dimension 6, dont on montre qu’il est essentiellement unique.
LA - fre
KW - symplectic form; pseudogroup; transitive action
UR - http://eudml.org/doc/75279
ER -
References
top- [Ar] V.I. ARNOLD, Méthodes mathématiques de la mécanique classique, Mir, 1976. Zbl0385.70001MR57 #14033a
- [Be] A. BESSE, Einstein manifolds, Springer Verlag, 1987. Zbl0613.53001MR88f:53087
- [Bo1] A. BOREL, Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc., 55 (1949), 580-587. Zbl0034.01603MR10,680c
- [Bo2] A. BOREL, Le plan projectif des octaves et les sphères comme espaces homogènes, C. Rend. Acad. Sc., 230 (1950), 1378-1380. Zbl0041.52203MR11,640c
- [Br] R. BRYANT, Submanifolds and special structures on the octonians, J. Differential Geometry, 17 (1982), 185-232. Zbl0526.53055MR84h:53091
- [Ca] E. CALABI, Construction and properties of some 6-dimensional almost complex manifolds, Trans. Amer. Math. Soc., 87 (1958), 407-438. Zbl0080.37601MR24 #A558
- [Ec1] B. ECKMANN, Stetige Lösungen linearer Gleichungssysteme, Comment. Math. Helv., 15 (1943), 318-339. Zbl0028.32001MR5,104h
- [Ec2] B. ECKMANN, Complex-analytic manifolds, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pp. 420-427, Amer. Math. Soc., Providence, R. I., 1952. Zbl0049.13001
- [H] R. HARTSHORNE, Algebraic geometry, Springer Verlag, 1977. Zbl0367.14001MR57 #3116
- [Ha] R. HARVEY, Spinors and calibrations [ch. 6], Academic Press, 1990. Zbl0694.53002MR91e:53056
- [He] S. HELGASON, Differential geometry, Lie groups and symmetric spaces, Academic Press, 1978. Zbl0451.53038MR80k:53081
- [Hi] F. HIRZEBRUCH, Topological methods in algebraic geometry [ch. 1, §§3,4], Springer Verlag, 1966. Zbl0138.42001MR34 #2573
- [Ho] G. HOCHSCHILD, La structure des groupes de Lie, Dunod, 1968. Zbl0157.36502
- [HoGS] H.H. HOMER, W.D. GLOVER, R.E. STONG, Splitting the tangent bundle of projective space, Indiana Univ. Math. J., 31, No. 2 (1982), 161-166. Zbl0454.57013MR83f:57016
- [Hu] D. HUSEMOLLER, Fiber bundles [ch. 17], Springer Verlag, 3ème éd., 1994.
- [Ko] S. KOBAYASHI, Transformation groups in differential geometry, Springer Verlag, 1972. Zbl0246.53031MR50 #8360
- [MiSt] J. MILNOR, J. STASHEFF, Characteristic classes, Princeton University Press, 1974. Zbl0298.57008MR55 #13428
- [Mo] D. MONTGOMERY, Simply connected homogeneous spaces, Proc. Amer. Math. Soc., 1 (1950), 467-469. Zbl0041.36309MR12,242c
- [MoSa] D. MONTGOMERY, H. SAMELSON, Transformation groups of spheres, Ann. of Math., 44 (1943), 454-470. Zbl0063.04077MR5,60b
- [Mu] D. MUMFORD, Algebraic geometry I. Complex projective varieties, Springer Verlag, 1976. Zbl0356.14002
- [On] A.L. ONISCHIK, On Lie groups transitive on compact manifolds, I, II, III, Amer. Math. Soc. Translations, 73 (1968), 59-72; Mat. Sb., 116 (1967), 373-388; Mat. Sb., 117 (1968), 255-263. Zbl0198.29001
- [On2] A.L. ONISCHIK (ED.), Lie groups and Lie algebras 1. Foundations of Lie theory, Lie transformations groups, Springer Verlag, 1993. Zbl0777.00023
- [Sa] S. SALAMON, Riemannian geometry and holonomy groups [ch. 10], Longman, 1989. Zbl0685.53001MR90g:53058
- [Sz] Z.I. SZABO, A short topological proof for the symmetry of 2 point homogeneous spaces, Invent. Math., 106, No. 1 (1991), 61-64. Zbl0756.53024MR92f:53055
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.