Une caractérisation des formes symplectiques

Bruno Sévennec

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 1, page 265-280
  • ISSN: 0373-0956

Abstract

top
It is shown that a nonzero 2-form on a manifold M , such that the pseudogroup of local diffeomorphisms preserving it acts transitively on the bundle of tangent directions, is symplectic if dim M is not 6 . Moreover, there is a counterexample in 6 dimensions, which is shown to be essentially unique.

How to cite

top

Sévennec, Bruno. "Une caractérisation des formes symplectiques." Annales de l'institut Fourier 48.1 (1998): 265-280. <http://eudml.org/doc/75279>.

@article{Sévennec1998,
abstract = {On montre qu’une 2-forme non nulle sur une variété $M$, telle que le pseudogroupe des difféomorphismes locaux la préservant soit transitif sur le fibré des directions tangentes, est symplectique si la dimension de $M$ n’est pas $6$. De plus, il y a un contre-exemple en dimension 6, dont on montre qu’il est essentiellement unique.},
author = {Sévennec, Bruno},
journal = {Annales de l'institut Fourier},
keywords = {symplectic form; pseudogroup; transitive action},
language = {fre},
number = {1},
pages = {265-280},
publisher = {Association des Annales de l'Institut Fourier},
title = {Une caractérisation des formes symplectiques},
url = {http://eudml.org/doc/75279},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Sévennec, Bruno
TI - Une caractérisation des formes symplectiques
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 265
EP - 280
AB - On montre qu’une 2-forme non nulle sur une variété $M$, telle que le pseudogroupe des difféomorphismes locaux la préservant soit transitif sur le fibré des directions tangentes, est symplectique si la dimension de $M$ n’est pas $6$. De plus, il y a un contre-exemple en dimension 6, dont on montre qu’il est essentiellement unique.
LA - fre
KW - symplectic form; pseudogroup; transitive action
UR - http://eudml.org/doc/75279
ER -

References

top
  1. [Ar] V.I. ARNOLD, Méthodes mathématiques de la mécanique classique, Mir, 1976. Zbl0385.70001MR57 #14033a
  2. [Be] A. BESSE, Einstein manifolds, Springer Verlag, 1987. Zbl0613.53001MR88f:53087
  3. [Bo1] A. BOREL, Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc., 55 (1949), 580-587. Zbl0034.01603MR10,680c
  4. [Bo2] A. BOREL, Le plan projectif des octaves et les sphères comme espaces homogènes, C. Rend. Acad. Sc., 230 (1950), 1378-1380. Zbl0041.52203MR11,640c
  5. [Br] R. BRYANT, Submanifolds and special structures on the octonians, J. Differential Geometry, 17 (1982), 185-232. Zbl0526.53055MR84h:53091
  6. [Ca] E. CALABI, Construction and properties of some 6-dimensional almost complex manifolds, Trans. Amer. Math. Soc., 87 (1958), 407-438. Zbl0080.37601MR24 #A558
  7. [Ec1] B. ECKMANN, Stetige Lösungen linearer Gleichungssysteme, Comment. Math. Helv., 15 (1943), 318-339. Zbl0028.32001MR5,104h
  8. [Ec2] B. ECKMANN, Complex-analytic manifolds, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pp. 420-427, Amer. Math. Soc., Providence, R. I., 1952. Zbl0049.13001
  9. [H] R. HARTSHORNE, Algebraic geometry, Springer Verlag, 1977. Zbl0367.14001MR57 #3116
  10. [Ha] R. HARVEY, Spinors and calibrations [ch. 6], Academic Press, 1990. Zbl0694.53002MR91e:53056
  11. [He] S. HELGASON, Differential geometry, Lie groups and symmetric spaces, Academic Press, 1978. Zbl0451.53038MR80k:53081
  12. [Hi] F. HIRZEBRUCH, Topological methods in algebraic geometry [ch. 1, §§3,4], Springer Verlag, 1966. Zbl0138.42001MR34 #2573
  13. [Ho] G. HOCHSCHILD, La structure des groupes de Lie, Dunod, 1968. Zbl0157.36502
  14. [HoGS] H.H. HOMER, W.D. GLOVER, R.E. STONG, Splitting the tangent bundle of projective space, Indiana Univ. Math. J., 31, No. 2 (1982), 161-166. Zbl0454.57013MR83f:57016
  15. [Hu] D. HUSEMOLLER, Fiber bundles [ch. 17], Springer Verlag, 3ème éd., 1994. 
  16. [Ko] S. KOBAYASHI, Transformation groups in differential geometry, Springer Verlag, 1972. Zbl0246.53031MR50 #8360
  17. [MiSt] J. MILNOR, J. STASHEFF, Characteristic classes, Princeton University Press, 1974. Zbl0298.57008MR55 #13428
  18. [Mo] D. MONTGOMERY, Simply connected homogeneous spaces, Proc. Amer. Math. Soc., 1 (1950), 467-469. Zbl0041.36309MR12,242c
  19. [MoSa] D. MONTGOMERY, H. SAMELSON, Transformation groups of spheres, Ann. of Math., 44 (1943), 454-470. Zbl0063.04077MR5,60b
  20. [Mu] D. MUMFORD, Algebraic geometry I. Complex projective varieties, Springer Verlag, 1976. Zbl0356.14002
  21. [On] A.L. ONISCHIK, On Lie groups transitive on compact manifolds, I, II, III, Amer. Math. Soc. Translations, 73 (1968), 59-72; Mat. Sb., 116 (1967), 373-388; Mat. Sb., 117 (1968), 255-263. Zbl0198.29001
  22. [On2] A.L. ONISCHIK (ED.), Lie groups and Lie algebras 1. Foundations of Lie theory, Lie transformations groups, Springer Verlag, 1993. Zbl0777.00023
  23. [Sa] S. SALAMON, Riemannian geometry and holonomy groups [ch. 10], Longman, 1989. Zbl0685.53001MR90g:53058
  24. [Sz] Z.I. SZABO, A short topological proof for the symmetry of 2 point homogeneous spaces, Invent. Math., 106, No. 1 (1991), 61-64. Zbl0756.53024MR92f:53055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.