Goldbach numbers in sparse sequences

Jörg Brüdern; Alberto Perelli

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 2, page 353-378
  • ISSN: 0373-0956

Abstract

top
We show that for almost all n N , the inequality | p 1 + p 2 - exp ( ( log n ) γ ) | < 1 has solutions with odd prime numbers p 1 and p 2 , provided 1 < γ < 3 2 . Moreover, we give a rather sharp bound for the exceptional set.This result provides almost-all results for Goldbach numbers in sequences rather thinner than the values taken by any polynomial.

How to cite

top

Brüdern, Jörg, and Perelli, Alberto. "Goldbach numbers in sparse sequences." Annales de l'institut Fourier 48.2 (1998): 353-378. <http://eudml.org/doc/75285>.

@article{Brüdern1998,
abstract = {We show that for almost all $n\in \{\bf N\}$, the inequality\begin\{\}\vert p\_1+p\_2-\{\rm exp\}((\{\rm log\}\,n)^\gamma )\vert &lt; 1\end\{\}has solutions with odd prime numbers $p_1$ and $p_2$, provided $1&lt; \gamma &lt; \{3\over 2\}$. Moreover, we give a rather sharp bound for the exceptional set.This result provides almost-all results for Goldbach numbers in sequences rather thinner than the values taken by any polynomial.},
author = {Brüdern, Jörg, Perelli, Alberto},
journal = {Annales de l'institut Fourier},
keywords = {sparse sequence of even numbers; exponential sums; Goldbach numbers; Hardy-Littlewood method; Goldbach's problem},
language = {eng},
number = {2},
pages = {353-378},
publisher = {Association des Annales de l'Institut Fourier},
title = {Goldbach numbers in sparse sequences},
url = {http://eudml.org/doc/75285},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Brüdern, Jörg
AU - Perelli, Alberto
TI - Goldbach numbers in sparse sequences
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 353
EP - 378
AB - We show that for almost all $n\in {\bf N}$, the inequality\begin{}\vert p_1+p_2-{\rm exp}(({\rm log}\,n)^\gamma )\vert &lt; 1\end{}has solutions with odd prime numbers $p_1$ and $p_2$, provided $1&lt; \gamma &lt; {3\over 2}$. Moreover, we give a rather sharp bound for the exceptional set.This result provides almost-all results for Goldbach numbers in sequences rather thinner than the values taken by any polynomial.
LA - eng
KW - sparse sequence of even numbers; exponential sums; Goldbach numbers; Hardy-Littlewood method; Goldbach's problem
UR - http://eudml.org/doc/75285
ER -

References

top
  1. [BHP] R.C. BAKER, G. HARMAN, J. PINTZ, The exceptional set for Goldbach's problem in short intervals - Sieve Methods, Exp. Sums and Appl. in Number Theory, ed. by G.R.H. Greaves et al., 1-54, Cambridge U. P. 1997. Zbl0929.11042MR99g:11121
  2. [BP] J. BRÜDERN, A. PERELLI, Goldbach numbers and uniform distribution mod 1, Analytic Number Theory, ed. by Y. Motohashi, 43-51, Cambridge Univ. Press. 1997. Zbl0911.11047
  3. [D] H. DAVENPORT, Multiplicative Number Theory, 2nd ed., Springer Verlag, 1980. Zbl0453.10002MR82m:10001
  4. [G] D.A. GOLDSTON, On Hardy and Littlewood's contribution to the Goldbach conjecture, Proc. Amalfi Conf. Analytic Number Theory, ed. by E. Bombieri et al., 115-155, Università di Salerno 1992. Zbl0792.11039MR94m:11122
  5. [HL] G.H. HARDY, J.E. LITTLEWOOD, Some problems of "Partitio Numerorum", V : A further contribution to the study of Goldbach's problem, Proc. London Math. Soc., (2) 22 (1923), 46-56. Zbl49.0127.03JFM49.0127.03
  6. [K] A.A. KARACUBA, Estimates for trigonometric sums by Vinogradov's method, and some applications, Proc. Steklov Inst. Math., 112 (1973), 251-265. Zbl0259.10040MR49 #7049
  7. [LP] A. LANGUASCO, A. PERELLI, A pair correlation hypothesis and the exceptional set in Goldbach's problem, Mathematika, 43 (1996), 349-361. Zbl0884.11042MR98g:11113
  8. [MV] H.L. MONTGOMERY, R.C. VAUGHAN, The exceptional set in Goldbach's problem, Acta Arith., 27 (1975), 353-370. Zbl0301.10043MR51 #10263
  9. [P] A. PERELLI, Goldbach numbers represented by polynomials, Rev. Math. Iberoamericana, 12 (1996), 477-490. Zbl0874.11069MR97h:11116
  10. [Va] R.C. VAUGHAN, The Hardy-Littlewood Method, Cambridge Univ. Press., 1981. Zbl0455.10034MR84b:10002
  11. [Vi] I.M. VINOGRADOV, Selected Works, Springer Verlag, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.