About G -bundles over elliptic curves

Yves Laszlo

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 2, page 413-424
  • ISSN: 0373-0956

Abstract

top
Let G be a complex algebraic group, simple and simply connected, T a maximal torus and W the Weyl group. One shows that the coarse moduli space M G ( X ) parametrizing S -equivalence classes of semistable G -bundles over an elliptic curve X is isomorphic to [ Γ ( T ) Z X ] / W . By a result of Looijenga, this shows that M G ( X ) is a weighted projective space.

How to cite

top

Laszlo, Yves. "About $G$-bundles over elliptic curves." Annales de l'institut Fourier 48.2 (1998): 413-424. <http://eudml.org/doc/75287>.

@article{Laszlo1998,
abstract = {Let $G$ be a complex algebraic group, simple and simply connected, $T$ a maximal torus and $W$ the Weyl group. One shows that the coarse moduli space $M_G(X)$ parametrizing $S$-equivalence classes of semistable $G$-bundles over an elliptic curve $X$ is isomorphic to $[\Gamma (T)\otimes _\{\{\bf Z\}\} X]/W$. By a result of Looijenga, this shows that $M_G(X)$ is a weighted projective space.},
author = {Laszlo, Yves},
journal = {Annales de l'institut Fourier},
keywords = {semistable bundles; principal bundles over a complex elliptic curve; coarse moduli space},
language = {eng},
number = {2},
pages = {413-424},
publisher = {Association des Annales de l'Institut Fourier},
title = {About $G$-bundles over elliptic curves},
url = {http://eudml.org/doc/75287},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Laszlo, Yves
TI - About $G$-bundles over elliptic curves
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 413
EP - 424
AB - Let $G$ be a complex algebraic group, simple and simply connected, $T$ a maximal torus and $W$ the Weyl group. One shows that the coarse moduli space $M_G(X)$ parametrizing $S$-equivalence classes of semistable $G$-bundles over an elliptic curve $X$ is isomorphic to $[\Gamma (T)\otimes _{{\bf Z}} X]/W$. By a result of Looijenga, this shows that $M_G(X)$ is a weighted projective space.
LA - eng
KW - semistable bundles; principal bundles over a complex elliptic curve; coarse moduli space
UR - http://eudml.org/doc/75287
ER -

References

top
  1. [AB] M.F. ATIYAH, R. BOTT, The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond., A 308 (1982), 523-615. Zbl0509.14014MR85k:14006
  2. [Be] A. BEAUVILLE, Conformal blocks, fusion rules and the Verlinde formula, Israel Math. Conf. Proc., 9 (1996), 75-96. Zbl0848.17024MR97f:17025
  3. [BS] I. N. BERNSHTEIN, O. V. SHVARTSMAN, Chevalley's theorem for complex crystallographic Coxeter groups, Funkt. Anal. i Ego Prilozheniya, 12 (1978), 79-80. Zbl0458.32017MR80d:32007
  4. [BLS] A. BEAUVILLE, Y. LASZLO, C. SORGER, The Picard group of the moduli stack of G-bundles on a curve, preprint alg-geom/9608002, to appear in Compos. Math. Zbl0976.14024
  5. [Bo] N. BOURBAKI, Groupes et algèbres de Lie, chap. 7, 8 (1990), Masson. 
  6. [BG] V. BARANOVSKY, V. GINZBURGConjugacy classes in loop groups and G-bundles on elliptic curves, Int. Math. Res. Not., 15 (1966), 733-752. Zbl0992.20034MR97j:20044
  7. [D] C. DELORMEEspaces projectifs anisotropes, Bull. Soc. Math. France, 103 (1975), 203-223. Zbl0314.14016MR53 #8080a
  8. [FMW] R. FRIEDMAN, J. MORGAN, E. WITTENVector bundles and F Theory, eprint hep-th 9701162. Zbl0919.14010
  9. [Hu] J. E. HUMPHREYS, Linear algebraic groups, GTM 21, Berlin, Heidelberg, New-York, Springer (1975). Zbl0325.20039MR53 #633
  10. [LS] Y. LASZLO, C. SORGERPicard group of the moduli stack of G-bundles, Ann. Scient. Éc. Norm. Sup., 4e série, 30 (1997), 499-525. 
  11. [LeP] J. LE POTIER, Fibrés vectoriels sur les courbes algébriques, Publ. Math. Univ. Paris 7, 35 (1995). Zbl0842.14025MR97c:14034
  12. [Lo] E. LOOIJENGA, Root systems and elliptic curves, Invent. Math., 38 (1976), 17-32. Zbl0358.17016MR57 #6015
  13. [Ra1] A. RAMANATHAN, Moduli for principal bundles over algebraic curves, I and II, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 301-328 and 421-449. Zbl0901.14007MR98b:14009a
  14. [Ra2] A. RAMANATHAN, Stable principal bundles on a compact Rieman surface, Math. Ann., 213 (1975), 129-152. Zbl0284.32019MR51 #5979
  15. [S] J.-P. SERRE, Cohomologie galoisienne, LNM 5 (1964). Zbl0128.26303
  16. [T] L. TU, Semistable bundles over an elliptic curve, Adv. Math., 98 (1993), 1-26. Zbl0786.14021MR94a:14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.