About -bundles over elliptic curves
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 2, page 413-424
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLaszlo, Yves. "About $G$-bundles over elliptic curves." Annales de l'institut Fourier 48.2 (1998): 413-424. <http://eudml.org/doc/75287>.
@article{Laszlo1998,
abstract = {Let $G$ be a complex algebraic group, simple and simply connected, $T$ a maximal torus and $W$ the Weyl group. One shows that the coarse moduli space $M_G(X)$ parametrizing $S$-equivalence classes of semistable $G$-bundles over an elliptic curve $X$ is isomorphic to $[\Gamma (T)\otimes _\{\{\bf Z\}\} X]/W$. By a result of Looijenga, this shows that $M_G(X)$ is a weighted projective space.},
author = {Laszlo, Yves},
journal = {Annales de l'institut Fourier},
keywords = {semistable bundles; principal bundles over a complex elliptic curve; coarse moduli space},
language = {eng},
number = {2},
pages = {413-424},
publisher = {Association des Annales de l'Institut Fourier},
title = {About $G$-bundles over elliptic curves},
url = {http://eudml.org/doc/75287},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Laszlo, Yves
TI - About $G$-bundles over elliptic curves
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 413
EP - 424
AB - Let $G$ be a complex algebraic group, simple and simply connected, $T$ a maximal torus and $W$ the Weyl group. One shows that the coarse moduli space $M_G(X)$ parametrizing $S$-equivalence classes of semistable $G$-bundles over an elliptic curve $X$ is isomorphic to $[\Gamma (T)\otimes _{{\bf Z}} X]/W$. By a result of Looijenga, this shows that $M_G(X)$ is a weighted projective space.
LA - eng
KW - semistable bundles; principal bundles over a complex elliptic curve; coarse moduli space
UR - http://eudml.org/doc/75287
ER -
References
top- [AB] M.F. ATIYAH, R. BOTT, The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond., A 308 (1982), 523-615. Zbl0509.14014MR85k:14006
- [Be] A. BEAUVILLE, Conformal blocks, fusion rules and the Verlinde formula, Israel Math. Conf. Proc., 9 (1996), 75-96. Zbl0848.17024MR97f:17025
- [BS] I. N. BERNSHTEIN, O. V. SHVARTSMAN, Chevalley's theorem for complex crystallographic Coxeter groups, Funkt. Anal. i Ego Prilozheniya, 12 (1978), 79-80. Zbl0458.32017MR80d:32007
- [BLS] A. BEAUVILLE, Y. LASZLO, C. SORGER, The Picard group of the moduli stack of G-bundles on a curve, preprint alg-geom/9608002, to appear in Compos. Math. Zbl0976.14024
- [Bo] N. BOURBAKI, Groupes et algèbres de Lie, chap. 7, 8 (1990), Masson.
- [BG] V. BARANOVSKY, V. GINZBURGConjugacy classes in loop groups and G-bundles on elliptic curves, Int. Math. Res. Not., 15 (1966), 733-752. Zbl0992.20034MR97j:20044
- [D] C. DELORMEEspaces projectifs anisotropes, Bull. Soc. Math. France, 103 (1975), 203-223. Zbl0314.14016MR53 #8080a
- [FMW] R. FRIEDMAN, J. MORGAN, E. WITTENVector bundles and F Theory, eprint hep-th 9701162. Zbl0919.14010
- [Hu] J. E. HUMPHREYS, Linear algebraic groups, GTM 21, Berlin, Heidelberg, New-York, Springer (1975). Zbl0325.20039MR53 #633
- [LS] Y. LASZLO, C. SORGERPicard group of the moduli stack of G-bundles, Ann. Scient. Éc. Norm. Sup., 4e série, 30 (1997), 499-525.
- [LeP] J. LE POTIER, Fibrés vectoriels sur les courbes algébriques, Publ. Math. Univ. Paris 7, 35 (1995). Zbl0842.14025MR97c:14034
- [Lo] E. LOOIJENGA, Root systems and elliptic curves, Invent. Math., 38 (1976), 17-32. Zbl0358.17016MR57 #6015
- [Ra1] A. RAMANATHAN, Moduli for principal bundles over algebraic curves, I and II, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 301-328 and 421-449. Zbl0901.14007MR98b:14009a
- [Ra2] A. RAMANATHAN, Stable principal bundles on a compact Rieman surface, Math. Ann., 213 (1975), 129-152. Zbl0284.32019MR51 #5979
- [S] J.-P. SERRE, Cohomologie galoisienne, LNM 5 (1964). Zbl0128.26303
- [T] L. TU, Semistable bundles over an elliptic curve, Adv. Math., 98 (1993), 1-26. Zbl0786.14021MR94a:14008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.