Structures affines et projectives sur les surfaces complexes

Bruno Klingler

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 2, page 441-477
  • ISSN: 0373-0956

Abstract

top
A complex affine (resp. projective) structure on a complex surface is an atlas of charts with value in 2 (resp. in P 2 ) with change of coordinates in the affine group A ( 2 , ) (resp. P G L ( 3 , ) ). In this paper we classify the affine complex surfaces and calculate, given a complex surface S , the space of deformation of affine structures on S compatible with its analytic structure. We also show that a projective structure on a complex surface admitting an affine structure is necessarily affine.

How to cite

top

Klingler, Bruno. "Structures affines et projectives sur les surfaces complexes." Annales de l'institut Fourier 48.2 (1998): 441-477. <http://eudml.org/doc/75289>.

@article{Klingler1998,
abstract = {Une structure complexe affine (resp. projective) sur une surface complexe est la donnée d’un atlas de cartes à valeur dans $\{\Bbb C\}^\{2\}$ (resp. $\{\bf P\}^\{2\}\{\Bbb C\}$) à changements de cartes localement constants dans le groupe affine $A(2,\{\Bbb C\})$ (resp. le groupe $\{\bf P\}GL(3,\{\Bbb C\})$). Dans cet article nous classifions les surfaces complexes affines et calculons, à surface complexe $S$ fixée, l’espace de déformation des structures complexes affines sur $S$ compatibles avec sa structure analytique. Nous montrons aussi que toute structure projective sur une surface complexe admettant une structure complexe affine est nécessairement affine.},
author = {Klingler, Bruno},
journal = {Annales de l'institut Fourier},
keywords = {complex surfaces; affine structure; projective structure; flat holomorphic connection; locally homogeneous space},
language = {fre},
number = {2},
pages = {441-477},
publisher = {Association des Annales de l'Institut Fourier},
title = {Structures affines et projectives sur les surfaces complexes},
url = {http://eudml.org/doc/75289},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Klingler, Bruno
TI - Structures affines et projectives sur les surfaces complexes
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 441
EP - 477
AB - Une structure complexe affine (resp. projective) sur une surface complexe est la donnée d’un atlas de cartes à valeur dans ${\Bbb C}^{2}$ (resp. ${\bf P}^{2}{\Bbb C}$) à changements de cartes localement constants dans le groupe affine $A(2,{\Bbb C})$ (resp. le groupe ${\bf P}GL(3,{\Bbb C})$). Dans cet article nous classifions les surfaces complexes affines et calculons, à surface complexe $S$ fixée, l’espace de déformation des structures complexes affines sur $S$ compatibles avec sa structure analytique. Nous montrons aussi que toute structure projective sur une surface complexe admettant une structure complexe affine est nécessairement affine.
LA - fre
KW - complex surfaces; affine structure; projective structure; flat holomorphic connection; locally homogeneous space
UR - http://eudml.org/doc/75289
ER -

References

top
  1. [1] W. BARTH, C. PETERS, A. VAN DE VEN, Compact complex surfaces, Ergebnisse der Mathematik, vol. 4, 1984, Springer Verlag. Zbl0718.14023MR86c:32026
  2. [2] Y. BENOIST, Nilvariétés projectives, Comment. Math. Helvetici, 69 (1994), 447-473. Zbl0839.53033MR95m:57054
  3. [3] A. BLANCHARD, Automorphismes des variétés fibrées analytiques complexes, C.R.A.S., Paris, 233 (1951), 1337-1339. Zbl0054.07301MR13,674a
  4. [4] F.A. BOGOMOLOV, Surfaces of class VII0 and affine geometry, Math. USSR Izvestiya, vol. 21 (1983), 31-73. Zbl0527.14029
  5. [5] C. EHRESMANN, Sur les espaces localement homogènes, Enseign. Math., 35 (1936), 317-333. Zbl0015.39404JFM62.1473.03
  6. [6] D. FRIED, W. GOLDMAN, M.W. HIRSCH, Affine manifolds with nilpotent holonomy, Comment. Math. Helvetici, 56 (1981), 487-523. Zbl0516.57014MR83h:53062
  7. [7] P. GRIFFITHS, J. HARRIS, Principles of algebraic geometry, Wiley & Sons, 1978. Zbl0408.14001MR80b:14001
  8. [8] R.C. GUNNING, Lectures on Riemann Surfaces, Princeton Mathematical Notes (1966). Zbl0175.36801MR34 #7789
  9. [9] R.C. GUNNING, Lectures on vector bundles over Riemann surfaces, Princeton Mathematical Notes (1967). Zbl0163.31903MR37 #5888
  10. [10] R.C. GUNNING, Special coordinate coverings of Riemann surfaces, Math. Annalen, 170 (1970), 67-86. Zbl0144.33501MR34 #7790
  11. [11] R.C. GUNNING, Affine and projective structures on Riemann surfaces, in "Riemann surfaces and related topics", Proceedings of the 1978 Stony Brook conference, Princeton University Press (1980). Zbl0457.30037
  12. [12] M. INOUE, On surfaces of class VII0, Invent. Math., 24 (1974), 269-310. Zbl0283.32019MR49 #7479
  13. [13] M. INOUE, S. KOBAYASHI, T. OCHIAI, Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo, 27 (1980), 247-264. Zbl0467.32014MR82g:32033
  14. [14] M. KAPOVICH, On monodromy of complex projective structures, Invent. Math., 119-2 (1995), 243-265. Zbl0839.57011MR95k:57017
  15. [15] S. KOBAYASHI, T. OCHIAI, Holomorphic projective structures on compact complex surfaces, Math. Annalen, 249 (1980), 75-94. Zbl0412.32026MR81g:32021
  16. [16] K. KODAIRA, On compact analytic surfaces I : Ann. Math., 71 (1960), 111-152, II : ibid, 77 (1963), 563-626, III : ibid., 78 (1963), 1-40. Zbl0171.19601
  17. [17] K. KODAIRA, On the structure of compact complex analytic surfaces I : Am. J. Math., 86 (1964), 751-798, II : ibid., 88 (1966), 682-721, III : ibid., 78 (1968), 55-83, IV : ibid., 90 (1968), 1048-1066. Zbl0137.17501MR32 #4708
  18. [18] K. MAEHARA, On elliptic surfaces whose first Betti numbers are odd, Intl. Symp. on Alg. Geom., Kyoto (1977), 565-574. Zbl0407.14015MR82a:32036
  19. [19] T. SUWA, Compact quotients of ℂ2 by affine transformation groups, J. Diff. Geometry, 10 (1975), 239-252. Zbl0311.57025MR51 #5977
  20. [20] W. THURSTON, The geometry and topology of 3-manifolds, Lecture Notes from Princeton Univ. (1977-1978). 
  21. [21] A. VITTER, Affine structures on compact complex manifolds, Invent. Math., 17 (1972), 231-244. Zbl0253.32006MR49 #3761
  22. [22] C.T.C. WALL, Geometric structures on compact complex analytic surfaces, Topology, vol. 25-2 (1986), 119-153. Zbl0602.57014MR88d:32038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.