From non-Kählerian surfaces to Cremona group of P 2 (C)
Complex Manifolds (2014)
- Volume: 1, Issue: 1, page 1-33, electronic only
- ISSN: 2300-7443
Access Full Article
topAbstract
topHow to cite
topGeorges Dloussky. " From non-Kählerian surfaces to Cremona group of P 2 (C) ." Complex Manifolds 1.1 (2014): 1-33, electronic only. <http://eudml.org/doc/276965>.
@article{GeorgesDloussky2014,
abstract = {For any minimal compact complex surface S with n = b2(S) > 0 containing global spherical shells (GSS) we study the effectiveness of the 2n parameters given by the n blown up points. There exists a family of surfaces S → B with GSS which contains as fibers S, some Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically effective parameters. These families are versal outside a non empty hypersurface T ⊂ B. We deduce that, for any configuration of rational curves, there is a non empty open set in the Oeljeklaus-Toma moduli space such that the corresponding surfaces are defined by a contracting germ in Cremona group, in particular admit a birational structure.},
author = {Georges Dloussky},
journal = {Complex Manifolds},
keywords = {compact complex surfaces; global spherical shells; Inoue-Hirzebruch surfaces},
language = {eng},
number = {1},
pages = {1-33, electronic only},
title = { From non-Kählerian surfaces to Cremona group of P 2 (C) },
url = {http://eudml.org/doc/276965},
volume = {1},
year = {2014},
}
TY - JOUR
AU - Georges Dloussky
TI - From non-Kählerian surfaces to Cremona group of P 2 (C)
JO - Complex Manifolds
PY - 2014
VL - 1
IS - 1
SP - 1
EP - 33, electronic only
AB - For any minimal compact complex surface S with n = b2(S) > 0 containing global spherical shells (GSS) we study the effectiveness of the 2n parameters given by the n blown up points. There exists a family of surfaces S → B with GSS which contains as fibers S, some Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically effective parameters. These families are versal outside a non empty hypersurface T ⊂ B. We deduce that, for any configuration of rational curves, there is a non empty open set in the Oeljeklaus-Toma moduli space such that the corresponding surfaces are defined by a contracting germ in Cremona group, in particular admit a birational structure.
LA - eng
KW - compact complex surfaces; global spherical shells; Inoue-Hirzebruch surfaces
UR - http://eudml.org/doc/276965
ER -
References
top- [1] Baum B., Bott R., Singularities of holomorphic foliations. J. Diff. Geom. 7 (1972) 279-342 Zbl0268.57011
- [2] Banica C., Stanasila O., Algebraic methods in the global theory of complex spaces, John Wiley & Sons, 1976. Zbl0334.32001
- [3] Bruasse L., Thèse: Stabilité et filtration de Harder-Narasimhan. Université d’Aix-Marseille 1 (2001).
- [4] Brunella M., Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Scient. Ec. Norm. Sup., 30, p569-594 (1997).
- [5] Dloussky G., Structure des surfaces de Kato, Mémoire de la S.M.F 112.n°14 (1984).
- [6] Dloussky G., Une construction élémentaire des surfaces d’Inoue-Hirzebruch. Math. Ann. 280, (1988), 663-682. Zbl0617.14025
- [7] Dloussky G., Quadratic forms and singularities of genus one or two. Annales de la faculté des sciences de Toulouse vol 20 (2011), p15-69. Zbl1219.14022
- [8] Dloussky G., From non-Ḱ’ahlerian surfaces to Cremona group of P2(C), arXiv:1206.2518 (2012).
- [9] Dloussky G., Kohler F., Classification of singular germs of mappings and deformations of compact surfaces of class VII0, Ann. Polonici Mathematici LXX, (1998), 49-83 Zbl0930.32013
- [10] Dloussky G., Oeljeklaus K., Vector fields and foliations on surfaces of class VII0, Ann. Inst. Fourier 49, (1999), 1503-1545 Zbl0978.32021
- [11] Dloussky G., Oeljeklaus K., Surfaces de la classe VII0 et automorphismes de Hénon. C.R.A.S. 328, série I, p.609-612, (1999) Zbl0945.32005
- [12] Dloussky G., Oeljeklaus K., Toma M., Class VII0 surfaces with b2 curves. Tohoku Math. J. 55, 283-309 (2003). Zbl1034.32012
- [13] Dloussky G., Teleman A., Infinite bubbling phenomenon in non Kȁhler geometry. Math. Ann. 353, 1283-1314 (2012)[WoS] Zbl1252.32026
- [14] Favre Ch., Classification of 2-dimensional contracting rigid germs, Jour. Math. Pures Appl. 79, (2000), 475-514 Zbl0983.32023
- [15] Gauduchon P., Le théorème de l’excentricité nulle. C.R. Acad. Sci. Paris 285, 387-390 (1977). Zbl0362.53024
- [16] Griffiths P., Harris J., Principles of algebraic geometry, Pure and applied mathematics, John Wiley (1978) Zbl0408.14001
- [17] Hubbard John H., Oberste-Vorth Ralph W., Hénon mappings in the complex domain. I. Publ. IHES, (79):5-46, 1994.[Crossref] Zbl0839.54029
- [18] Inoue M., Kobayashi S., Ochiai T., Holomorphic affine connections on compact complex surfaces. J. Fac. Sci. Univ. Tokyo 27 (1980), 247-264. Zbl0467.32014
- [19] Klingler B., Structures affines et projectives sur les surfaces complexes. Ann. Inst. Fourier 48, 2 (1998), 441-477.[Crossref] Zbl0920.32027
- [20] Kohler F., Feuilletages holomorphes singuliers sur les surfaces contenant une coquille sphérique globale. Ann. Inst. Fourier, 45 (1995), 161-182. Erratum Ann. Inst. Fourier 46 (1996), 589.[Crossref] Zbl0814.57022
- [21] Kobayashi S., Differential geometry of complex vector bundles Publ. of the Math. Soc. of Japan 15, Iwanami Shoten and Princeton univ. press (1987). Zbl0708.53002
- [22] Kobayashi S., Ochiai T., Holomorphic Projective Structures on Compact Complex Surfaces Math. Ann. 249. p75-94 (1980). Zbl0412.32026
- [23] Lübke, Teleman A., The Kobayashi-Hitchin correspondence. World Scientific 1995. Zbl0849.32020
- [24] Nakamura I., On surfaces of class VII0 with curves. Invent. Math. 78,(1984), 393-443. Zbl0575.14033
- [25] Nakamura I., On surfaces of class VII0 with curves II. Tohoku Math. J. 42 (1990), 475-516. Zbl0732.14019
- [26] Oeljeklaus K., Toma M., Logarithmic moduli spaces for surfaces of class VII, Math. Ann. 341 (2008), 323-345[WoS] Zbl1144.32004
- [27] Potters J., On Almost Homogeneous Compact Complex Surfaces. Invent. Math. 8, 244-266 (1969).
- [28] Teleman A., Donaldson theory on non-Kählerian surfaces and class VII surfaces with b2 = 1, Invent. math. 162, 493-521 (2005) Zbl1093.32006
- [29] Teleman A., Instantons and curves on class VII surfaces, Annals of Math., 172-3 (2010), 1749-1804.
- [30] Teleman A., On the torsion of the first direct image of a locally free sheaf. arxiv:1309.0342 (2013)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.