From non-Kählerian surfaces to Cremona group of P 2 (C)

Georges Dloussky

Complex Manifolds (2014)

  • Volume: 1, Issue: 1, page 1-33, electronic only
  • ISSN: 2300-7443

Abstract

top
For any minimal compact complex surface S with n = b2(S) > 0 containing global spherical shells (GSS) we study the effectiveness of the 2n parameters given by the n blown up points. There exists a family of surfaces S → B with GSS which contains as fibers S, some Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically effective parameters. These families are versal outside a non empty hypersurface T ⊂ B. We deduce that, for any configuration of rational curves, there is a non empty open set in the Oeljeklaus-Toma moduli space such that the corresponding surfaces are defined by a contracting germ in Cremona group, in particular admit a birational structure.

How to cite

top

Georges Dloussky. " From non-Kählerian surfaces to Cremona group of P 2 (C) ." Complex Manifolds 1.1 (2014): 1-33, electronic only. <http://eudml.org/doc/276965>.

@article{GeorgesDloussky2014,
abstract = {For any minimal compact complex surface S with n = b2(S) > 0 containing global spherical shells (GSS) we study the effectiveness of the 2n parameters given by the n blown up points. There exists a family of surfaces S → B with GSS which contains as fibers S, some Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically effective parameters. These families are versal outside a non empty hypersurface T ⊂ B. We deduce that, for any configuration of rational curves, there is a non empty open set in the Oeljeklaus-Toma moduli space such that the corresponding surfaces are defined by a contracting germ in Cremona group, in particular admit a birational structure.},
author = {Georges Dloussky},
journal = {Complex Manifolds},
keywords = {compact complex surfaces; global spherical shells; Inoue-Hirzebruch surfaces},
language = {eng},
number = {1},
pages = {1-33, electronic only},
title = { From non-Kählerian surfaces to Cremona group of P 2 (C) },
url = {http://eudml.org/doc/276965},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Georges Dloussky
TI - From non-Kählerian surfaces to Cremona group of P 2 (C)
JO - Complex Manifolds
PY - 2014
VL - 1
IS - 1
SP - 1
EP - 33, electronic only
AB - For any minimal compact complex surface S with n = b2(S) > 0 containing global spherical shells (GSS) we study the effectiveness of the 2n parameters given by the n blown up points. There exists a family of surfaces S → B with GSS which contains as fibers S, some Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically effective parameters. These families are versal outside a non empty hypersurface T ⊂ B. We deduce that, for any configuration of rational curves, there is a non empty open set in the Oeljeklaus-Toma moduli space such that the corresponding surfaces are defined by a contracting germ in Cremona group, in particular admit a birational structure.
LA - eng
KW - compact complex surfaces; global spherical shells; Inoue-Hirzebruch surfaces
UR - http://eudml.org/doc/276965
ER -

References

top
  1. [1] Baum B., Bott R., Singularities of holomorphic foliations. J. Diff. Geom. 7 (1972) 279-342 Zbl0268.57011
  2. [2] Banica C., Stanasila O., Algebraic methods in the global theory of complex spaces, John Wiley & Sons, 1976. Zbl0334.32001
  3. [3] Bruasse L., Thèse: Stabilité et filtration de Harder-Narasimhan. Université d’Aix-Marseille 1 (2001). 
  4. [4] Brunella M., Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Scient. Ec. Norm. Sup., 30, p569-594 (1997). 
  5. [5] Dloussky G., Structure des surfaces de Kato, Mémoire de la S.M.F 112.n°14 (1984). 
  6. [6] Dloussky G., Une construction élémentaire des surfaces d’Inoue-Hirzebruch. Math. Ann. 280, (1988), 663-682. Zbl0617.14025
  7. [7] Dloussky G., Quadratic forms and singularities of genus one or two. Annales de la faculté des sciences de Toulouse vol 20 (2011), p15-69. Zbl1219.14022
  8. [8] Dloussky G., From non-Ḱ’ahlerian surfaces to Cremona group of P2(C), arXiv:1206.2518 (2012). 
  9. [9] Dloussky G., Kohler F., Classification of singular germs of mappings and deformations of compact surfaces of class VII0, Ann. Polonici Mathematici LXX, (1998), 49-83 Zbl0930.32013
  10. [10] Dloussky G., Oeljeklaus K., Vector fields and foliations on surfaces of class VII0, Ann. Inst. Fourier 49, (1999), 1503-1545 Zbl0978.32021
  11. [11] Dloussky G., Oeljeklaus K., Surfaces de la classe VII0 et automorphismes de Hénon. C.R.A.S. 328, série I, p.609-612, (1999) Zbl0945.32005
  12. [12] Dloussky G., Oeljeklaus K., Toma M., Class VII0 surfaces with b2 curves. Tohoku Math. J. 55, 283-309 (2003). Zbl1034.32012
  13. [13] Dloussky G., Teleman A., Infinite bubbling phenomenon in non Kȁhler geometry. Math. Ann. 353, 1283-1314 (2012)[WoS] Zbl1252.32026
  14. [14] Favre Ch., Classification of 2-dimensional contracting rigid germs, Jour. Math. Pures Appl. 79, (2000), 475-514 Zbl0983.32023
  15. [15] Gauduchon P., Le théorème de l’excentricité nulle. C.R. Acad. Sci. Paris 285, 387-390 (1977). Zbl0362.53024
  16. [16] Griffiths P., Harris J., Principles of algebraic geometry, Pure and applied mathematics, John Wiley (1978) Zbl0408.14001
  17. [17] Hubbard John H., Oberste-Vorth Ralph W., Hénon mappings in the complex domain. I. Publ. IHES, (79):5-46, 1994.[Crossref] Zbl0839.54029
  18. [18] Inoue M., Kobayashi S., Ochiai T., Holomorphic affine connections on compact complex surfaces. J. Fac. Sci. Univ. Tokyo 27 (1980), 247-264. Zbl0467.32014
  19. [19] Klingler B., Structures affines et projectives sur les surfaces complexes. Ann. Inst. Fourier 48, 2 (1998), 441-477.[Crossref] Zbl0920.32027
  20. [20] Kohler F., Feuilletages holomorphes singuliers sur les surfaces contenant une coquille sphérique globale. Ann. Inst. Fourier, 45 (1995), 161-182. Erratum Ann. Inst. Fourier 46 (1996), 589.[Crossref] Zbl0814.57022
  21. [21] Kobayashi S., Differential geometry of complex vector bundles Publ. of the Math. Soc. of Japan 15, Iwanami Shoten and Princeton univ. press (1987). Zbl0708.53002
  22. [22] Kobayashi S., Ochiai T., Holomorphic Projective Structures on Compact Complex Surfaces Math. Ann. 249. p75-94 (1980). Zbl0412.32026
  23. [23] Lübke, Teleman A., The Kobayashi-Hitchin correspondence. World Scientific 1995. Zbl0849.32020
  24. [24] Nakamura I., On surfaces of class VII0 with curves. Invent. Math. 78,(1984), 393-443. Zbl0575.14033
  25. [25] Nakamura I., On surfaces of class VII0 with curves II. Tohoku Math. J. 42 (1990), 475-516. Zbl0732.14019
  26. [26] Oeljeklaus K., Toma M., Logarithmic moduli spaces for surfaces of class VII, Math. Ann. 341 (2008), 323-345[WoS] Zbl1144.32004
  27. [27] Potters J., On Almost Homogeneous Compact Complex Surfaces. Invent. Math. 8, 244-266 (1969). 
  28. [28] Teleman A., Donaldson theory on non-Kählerian surfaces and class VII surfaces with b2 = 1, Invent. math. 162, 493-521 (2005) Zbl1093.32006
  29. [29] Teleman A., Instantons and curves on class VII surfaces, Annals of Math., 172-3 (2010), 1749-1804. 
  30. [30] Teleman A., On the torsion of the first direct image of a locally free sheaf. arxiv:1309.0342 (2013) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.