Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields

Akira Iwatsuka; Hideo Tamura

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 2, page 479-515
  • ISSN: 0373-0956

Abstract

top
This article studies the asymptotic behavior of the number N ( λ ) of the negative eigenvalues < - λ as λ + 0 of the two dimensional Pauli operators with electric potential V ( x ) decaying at and with nonconstant magnetic field b ( x ) , which is assumed to be bounded or to decay at . In particular, it is shown that N ( λ ) = ( 1 / 2 π ) V ( x ) > λ b ( x ) d x ( 1 + o ( 1 ) ) , when V ( x ) decays faster than b ( x ) under some additional conditions.

How to cite

top

Iwatsuka, Akira, and Tamura, Hideo. "Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields." Annales de l'institut Fourier 48.2 (1998): 479-515. <http://eudml.org/doc/75290>.

@article{Iwatsuka1998,
abstract = {This article studies the asymptotic behavior of the number $N(\lambda )$ of the negative eigenvalues $&lt; -\lambda $ as $\lambda \rightarrow +0$ of the two dimensional Pauli operators with electric potential $V(x)$ decaying at $\infty $ and with nonconstant magnetic field $b(x)$, which is assumed to be bounded or to decay at $\infty $. In particular, it is shown that $N(\lambda ) = (1/2\pi ) \int _\{V(x)&gt;\lambda \}b(x)dx(1+o(1))$, when $V(x)$ decays faster than $b(x)$ under some additional conditions.},
author = {Iwatsuka, Akira, Tamura, Hideo},
journal = {Annales de l'institut Fourier},
keywords = {Pauli operator; negative eigenvalues; magnetic fields; asymptotic distribution; asymptotic distribution of negative eigenvalues},
language = {eng},
number = {2},
pages = {479-515},
publisher = {Association des Annales de l'Institut Fourier},
title = {Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields},
url = {http://eudml.org/doc/75290},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Iwatsuka, Akira
AU - Tamura, Hideo
TI - Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 479
EP - 515
AB - This article studies the asymptotic behavior of the number $N(\lambda )$ of the negative eigenvalues $&lt; -\lambda $ as $\lambda \rightarrow +0$ of the two dimensional Pauli operators with electric potential $V(x)$ decaying at $\infty $ and with nonconstant magnetic field $b(x)$, which is assumed to be bounded or to decay at $\infty $. In particular, it is shown that $N(\lambda ) = (1/2\pi ) \int _{V(x)&gt;\lambda }b(x)dx(1+o(1))$, when $V(x)$ decays faster than $b(x)$ under some additional conditions.
LA - eng
KW - Pauli operator; negative eigenvalues; magnetic fields; asymptotic distribution; asymptotic distribution of negative eigenvalues
UR - http://eudml.org/doc/75290
ER -

References

top
  1. [1] Y. AHARONOV and A. CASHER, Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field, Phys. Rev. A, 19 (1979), 2461-2462. 
  2. [2] J. AVRON, I. HERBST and B. SIMON, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., 45 (1978), 847-883. Zbl0399.35029MR80k:35054
  3. [3] Y. COLIN DE VERDIÈRE, L'asymptotique de Weyl pour les bouteilles magnétiques, Commun. Math. Phys., 105 (1986), 327-335. Zbl0612.35102MR87k:58273
  4. [4] H. CYCON, L. R. FROESE, W. G. KIRSCH and B. SIMON, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer Verlag, 1987. Zbl0619.47005
  5. [5] L. ERDÖS, Magnetic Lieb-Thirring inequalities and stochastic oscillatory integrals, Operator Theory, Advances and Applications, 78 (1994), Birkhäuser Verlag, 127-134. Zbl0833.35117MR96i:81068
  6. [6] L. ERDÖS, Magnetic Lieb-Thirring inequalities, Commun. Math. Phys., 170 (1995), 629-668. Zbl0843.47040MR96i:81069
  7. [7] L. ERDÖS and J. P. SOLOVEJ, Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. I. Non-asymptotic Lieb-Thirring type estimate, preprint, 1996. 
  8. [8] L. ERDÖS and J. P. SOLOVEJ, Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Commun. Math. Phys., 188 (1997), 599-656. Zbl0909.47052
  9. [9] I. C. GOHBERG and M. G. KREIN, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, Vol. 18, A.M.S., 1969. Zbl0181.13504MR39 #7447
  10. [10] A. IWATSUKA and H. TAMURA, Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields, preprint, 1997 (to be published in Duke Math. J.). Zbl0932.35159MR99e:35167
  11. [11] A. MOHAMED and G. D. RAIKOV, On the spectral theory of the Schrödinger operator with electromagnetic potential, Pseudo-differential Calculus and Mathematical Physics, Adv. Partial Differ. Eq., Academic Press, 5 (1994), 298-390. Zbl0813.35065MR96e:35122
  12. [12] I. SHIGEKAWA, Spectral properties of Schrödinger operators with magnetic fields for a spin 1/2 particle, J. Func. Anal., 101 (1991), 255-285. Zbl0742.47002MR93g:35101
  13. [13] A. V. SOBOLEV, Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field I, J. Soviet Math., 35 (1986), 2201-2211. Zbl0643.35028
  14. [14] A. V. SOBOLEV, On the Lieb-Thirring estimates for the Pauli operator, Duke Math. J., 82 (1996), 607-637. Zbl0882.47056MR97e:81030
  15. [15] H. TAMURA, Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields, Osaka J. Math., 25 (1988), 633-647. Zbl0731.35073MR90c:35159

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.