Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 2, page 479-515
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topIwatsuka, Akira, and Tamura, Hideo. "Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields." Annales de l'institut Fourier 48.2 (1998): 479-515. <http://eudml.org/doc/75290>.
@article{Iwatsuka1998,
abstract = {This article studies the asymptotic behavior of the number $N(\lambda )$ of the negative eigenvalues $< -\lambda $ as $\lambda \rightarrow +0$ of the two dimensional Pauli operators with electric potential $V(x)$ decaying at $\infty $ and with nonconstant magnetic field $b(x)$, which is assumed to be bounded or to decay at $\infty $. In particular, it is shown that $N(\lambda ) = (1/2\pi ) \int _\{V(x)>\lambda \}b(x)dx(1+o(1))$, when $V(x)$ decays faster than $b(x)$ under some additional conditions.},
author = {Iwatsuka, Akira, Tamura, Hideo},
journal = {Annales de l'institut Fourier},
keywords = {Pauli operator; negative eigenvalues; magnetic fields; asymptotic distribution; asymptotic distribution of negative eigenvalues},
language = {eng},
number = {2},
pages = {479-515},
publisher = {Association des Annales de l'Institut Fourier},
title = {Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields},
url = {http://eudml.org/doc/75290},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Iwatsuka, Akira
AU - Tamura, Hideo
TI - Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 479
EP - 515
AB - This article studies the asymptotic behavior of the number $N(\lambda )$ of the negative eigenvalues $< -\lambda $ as $\lambda \rightarrow +0$ of the two dimensional Pauli operators with electric potential $V(x)$ decaying at $\infty $ and with nonconstant magnetic field $b(x)$, which is assumed to be bounded or to decay at $\infty $. In particular, it is shown that $N(\lambda ) = (1/2\pi ) \int _{V(x)>\lambda }b(x)dx(1+o(1))$, when $V(x)$ decays faster than $b(x)$ under some additional conditions.
LA - eng
KW - Pauli operator; negative eigenvalues; magnetic fields; asymptotic distribution; asymptotic distribution of negative eigenvalues
UR - http://eudml.org/doc/75290
ER -
References
top- [1] Y. AHARONOV and A. CASHER, Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field, Phys. Rev. A, 19 (1979), 2461-2462.
- [2] J. AVRON, I. HERBST and B. SIMON, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., 45 (1978), 847-883. Zbl0399.35029MR80k:35054
- [3] Y. COLIN DE VERDIÈRE, L'asymptotique de Weyl pour les bouteilles magnétiques, Commun. Math. Phys., 105 (1986), 327-335. Zbl0612.35102MR87k:58273
- [4] H. CYCON, L. R. FROESE, W. G. KIRSCH and B. SIMON, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer Verlag, 1987. Zbl0619.47005
- [5] L. ERDÖS, Magnetic Lieb-Thirring inequalities and stochastic oscillatory integrals, Operator Theory, Advances and Applications, 78 (1994), Birkhäuser Verlag, 127-134. Zbl0833.35117MR96i:81068
- [6] L. ERDÖS, Magnetic Lieb-Thirring inequalities, Commun. Math. Phys., 170 (1995), 629-668. Zbl0843.47040MR96i:81069
- [7] L. ERDÖS and J. P. SOLOVEJ, Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. I. Non-asymptotic Lieb-Thirring type estimate, preprint, 1996.
- [8] L. ERDÖS and J. P. SOLOVEJ, Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Commun. Math. Phys., 188 (1997), 599-656. Zbl0909.47052
- [9] I. C. GOHBERG and M. G. KREIN, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, Vol. 18, A.M.S., 1969. Zbl0181.13504MR39 #7447
- [10] A. IWATSUKA and H. TAMURA, Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields, preprint, 1997 (to be published in Duke Math. J.). Zbl0932.35159MR99e:35167
- [11] A. MOHAMED and G. D. RAIKOV, On the spectral theory of the Schrödinger operator with electromagnetic potential, Pseudo-differential Calculus and Mathematical Physics, Adv. Partial Differ. Eq., Academic Press, 5 (1994), 298-390. Zbl0813.35065MR96e:35122
- [12] I. SHIGEKAWA, Spectral properties of Schrödinger operators with magnetic fields for a spin 1/2 particle, J. Func. Anal., 101 (1991), 255-285. Zbl0742.47002MR93g:35101
- [13] A. V. SOBOLEV, Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field I, J. Soviet Math., 35 (1986), 2201-2211. Zbl0643.35028
- [14] A. V. SOBOLEV, On the Lieb-Thirring estimates for the Pauli operator, Duke Math. J., 82 (1996), 607-637. Zbl0882.47056MR97e:81030
- [15] H. TAMURA, Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields, Osaka J. Math., 25 (1988), 633-647. Zbl0731.35073MR90c:35159
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.