Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields

Georgi D. Raikov

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 5, page 1603-1636
  • ISSN: 0373-0956

Abstract

top
We consider the Pauli operator H ( μ ) : = j = 1 m σ j - i x j - μ A j 2 + V selfadjoint in L 2 ( m ; 2 ) , m = 2 , 3 . Here σ j , j = 1 , ... , m , are the Pauli matrices, A : = ( A 1 , ... , A m ) is the magnetic potential, μ > 0 is the coupling constant, and V is the electric potential which decays at infinity. We suppose that the magnetic field generated by A satisfies some regularity conditions; in particular, its norm is lower-bounded by a positive constant, and, in the case m = 3 , its direction is constant. We investigate the asymptotic behaviour as μ of the number of the eigenvalues of H ( μ ) smaller than λ , the parameter λ < 0 being fixed. Furthermore, if m = 2 , we study the asymptotics as μ of the number of the eigenvalues of H ( μ ) situated on the interval ( λ 1 , λ 2 ) with 0 < λ 1 < λ 2 .

How to cite

top

Raikov, Georgi D.. "Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields." Annales de l'institut Fourier 49.5 (1999): 1603-1636. <http://eudml.org/doc/75395>.

@article{Raikov1999,
abstract = {We consider the Pauli operator $\{\bf H\}(\mu ):= \big (\sum _\{j=1\}^m \sigma _j \big (-i\{\partial \over \partial x_j\} - \mu A_j\big ) \big )^2 + V$ selfadjoint in $L^2(\{\Bbb R\}^m; \{\Bbb C\}^2)$, $m=2,3$. Here $\sigma _j$, $j=1, \ldots , m$, are the Pauli matrices, $A: = (A_1, \ldots , A_m)$ is the magnetic potential, $\mu &gt; 0$ is the coupling constant, and $V$ is the electric potential which decays at infinity. We suppose that the magnetic field generated by $A$ satisfies some regularity conditions; in particular, its norm is lower-bounded by a positive constant, and, in the case $m=3$, its direction is constant. We investigate the asymptotic behaviour as $\mu \rightarrow \infty $ of the number of the eigenvalues of $\{\bf H\}(\mu )$ smaller than $\lambda $, the parameter $\lambda &lt; 0$ being fixed. Furthermore, if $m=2$, we study the asymptotics as $\mu \rightarrow \infty $ of the number of the eigenvalues of $\{\bf H\}(\mu )$ situated on the interval $(\lambda _1, \lambda _2)$ with $0 &lt; \lambda _1 &lt; \lambda _2$.},
author = {Raikov, Georgi D.},
journal = {Annales de l'institut Fourier},
keywords = {eigenvalue asymptotics; quantum mechanical equations; Pauli operators; strong magnetic fields},
language = {eng},
number = {5},
pages = {1603-1636},
publisher = {Association des Annales de l'Institut Fourier},
title = {Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields},
url = {http://eudml.org/doc/75395},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Raikov, Georgi D.
TI - Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1603
EP - 1636
AB - We consider the Pauli operator ${\bf H}(\mu ):= \big (\sum _{j=1}^m \sigma _j \big (-i{\partial \over \partial x_j} - \mu A_j\big ) \big )^2 + V$ selfadjoint in $L^2({\Bbb R}^m; {\Bbb C}^2)$, $m=2,3$. Here $\sigma _j$, $j=1, \ldots , m$, are the Pauli matrices, $A: = (A_1, \ldots , A_m)$ is the magnetic potential, $\mu &gt; 0$ is the coupling constant, and $V$ is the electric potential which decays at infinity. We suppose that the magnetic field generated by $A$ satisfies some regularity conditions; in particular, its norm is lower-bounded by a positive constant, and, in the case $m=3$, its direction is constant. We investigate the asymptotic behaviour as $\mu \rightarrow \infty $ of the number of the eigenvalues of ${\bf H}(\mu )$ smaller than $\lambda $, the parameter $\lambda &lt; 0$ being fixed. Furthermore, if $m=2$, we study the asymptotics as $\mu \rightarrow \infty $ of the number of the eigenvalues of ${\bf H}(\mu )$ situated on the interval $(\lambda _1, \lambda _2)$ with $0 &lt; \lambda _1 &lt; \lambda _2$.
LA - eng
KW - eigenvalue asymptotics; quantum mechanical equations; Pauli operators; strong magnetic fields
UR - http://eudml.org/doc/75395
ER -

References

top
  1. [AHS] J. AVRON, I. HERBST, B. SIMON, Schrödinger operators with magnetic fields. I. General interactions, Duke. Math. J., 45 (1978), 847-883. Zbl0399.35029MR80k:35054
  2. [B] M.Š. BIRMAN, On the spectrum of singular boundary value problems, Mat. Sbornik, 55 (1961) 125-174 (Russian); Engl. transl. in Amer. Math. Soc. Transl., (2) 53 (1966), 23-80. Zbl0174.42502MR26 #463
  3. [E] L. ERDÖS, Ground state density of the Pauli operator in the large field limit, Lett.Math.Phys., 29 (1993), 219-240. Zbl0850.81030MR95a:81080
  4. [Hö] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators. IV, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985. Zbl0612.35001
  5. [IT1] A. IWATSUKA, H. TAMURA, Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields, Duke J.Math., 93 (1998), 535-574. Zbl0948.35091MR2000d:35172
  6. [IT2] A. IWATSUKA, H. TAMURA, Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields, Ann. Inst. Fourier, 48-2 (1998), 479-515. Zbl0909.35100MR99e:35168
  7. [KMSz] M. KAC, W.L. MURDOCK, G. SZEGÖ, On the eigenvalues of certain hermitian forms, Journ. Rat. Mech. Analysis, 2 (1953), 767-800. Zbl0051.30302MR15,538b
  8. [R1] G.D. RAIKOV, Eigenvalue asymptotics for the Schrödinger operator in strong constant magnetic fields, Commun. P.D.E., 23 (1998), 1583-1619. Zbl0919.35097MR99i:35120
  9. [R2] G.D. RAIKOV, Eigenvalue asymptotics for the Dirac operator in strong constant magnetic fields, Math. Phys. Electron. J., 5, n° 2 (1999), 22 p. http://www.ma.utexas.edu/mpej/. Zbl0923.35112MR2000h:35127
  10. [Sh] I. SHIGEKAWA, Spectral properties of Schrödinger operators with magnetic fields for a spin 1/2 particle, J. Func. Anal., 101 (1991), 255-285. Zbl0742.47002MR93g:35101
  11. [W] H. WIDOM, Eigenvalue distribution in certain homogeneous spaces, J. Func. Anal., 71 (1979), 139-147. Zbl0414.43010MR80h:58054

NotesEmbed ?

top

You must be logged in to post comments.