Réseaux de Coxeter-Davis et commensurateurs

Frédéric Haglund

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 3, page 649-666
  • ISSN: 0373-0956

Abstract

top
For each integer k 6 and each finite graph L , we construct a Coxeter group W and a non positively curved polygonal complex A on which W acts properly cocompactly, such that each polygon of A has k edges, and the link of each vertex of A is isomorphic to L . If L is a “generalized m -gon”, then A is a Tits building modelled on a reflection group of the hyperbolic plane. We give a condition on Aut ( L ) for Aut ( A ) to be non enumerable (which is satisfied if L is a thick classical generalized m -gon). On the other hand, if L has no loops of length 3 and if 4 divides k , we prove an arithmeticity property for W : the commensurator of W in Aut ( A ) is dense in Aut ( A ) .

How to cite

top

Haglund, Frédéric. "Réseaux de Coxeter-Davis et commensurateurs." Annales de l'institut Fourier 48.3 (1998): 649-666. <http://eudml.org/doc/75297>.

@article{Haglund1998,
abstract = {For each integer $k\ge 6$ and each finite graph $L$, we construct a Coxeter group $W$ and a non positively curved polygonal complex $A$ on which $W$ acts properly cocompactly, such that each polygon of $A$ has $k$ edges, and the link of each vertex of $A$ is isomorphic to $L$. If $L$ is a “generalized $m$-gon”, then $A$ is a Tits building modelled on a reflection group of the hyperbolic plane. We give a condition on $\{\rm Aut\}(L)$ for $\{\rm Aut\}(A)$ to be non enumerable (which is satisfied if $L$ is a thick classical generalized $m$-gon). On the other hand, if $L$ has no loops of length 3 and if 4 divides $k$, we prove an arithmeticity property for $W$: the commensurator of $W$ in $\{\rm Aut\}(A)$ is dense in $\{\rm Aut\}(A)$.},
author = {Haglund, Frédéric},
journal = {Annales de l'institut Fourier},
keywords = {polygonal complexes; CAT(0) spaces; Coxeter groups; commensurators; Tits buildings},
language = {eng},
number = {3},
pages = {649-666},
publisher = {Association des Annales de l'Institut Fourier},
title = {Réseaux de Coxeter-Davis et commensurateurs},
url = {http://eudml.org/doc/75297},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Haglund, Frédéric
TI - Réseaux de Coxeter-Davis et commensurateurs
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 3
SP - 649
EP - 666
AB - For each integer $k\ge 6$ and each finite graph $L$, we construct a Coxeter group $W$ and a non positively curved polygonal complex $A$ on which $W$ acts properly cocompactly, such that each polygon of $A$ has $k$ edges, and the link of each vertex of $A$ is isomorphic to $L$. If $L$ is a “generalized $m$-gon”, then $A$ is a Tits building modelled on a reflection group of the hyperbolic plane. We give a condition on ${\rm Aut}(L)$ for ${\rm Aut}(A)$ to be non enumerable (which is satisfied if $L$ is a thick classical generalized $m$-gon). On the other hand, if $L$ has no loops of length 3 and if 4 divides $k$, we prove an arithmeticity property for $W$: the commensurator of $W$ in ${\rm Aut}(A)$ is dense in ${\rm Aut}(A)$.
LA - eng
KW - polygonal complexes; CAT(0) spaces; Coxeter groups; commensurators; Tits buildings
UR - http://eudml.org/doc/75297
ER -

References

top
  1. [1] W. BALLMAN, M. BRIN, Polygonal complexes and combinatorial group theory, Geom. Dedicata, 50, sér. I (1994), 165-191. Zbl0832.57002MR95e:57004
  2. [2] H. BASS, R. KULKARNI, Uniform tree lattices, J. Amer. Math. Soc., 3 (1990), 843-902. Zbl0734.05052MR91k:20034
  3. [3] N. BENAKLI, Polyèdres à géométrie locale donnée, C. R. Acad. Sci., Paris, sér. I 313, n° 9, 561-564. Zbl0744.57003MR92k:52018
  4. [4] M. BURGER, S. MOZES, CAT(-1) spaces, divergence groups and their commensurators, J. Amer. Math. Soc, 9 (1996), 57-94. Zbl0847.22004MR96c:20065
  5. [5] M. DAVIS, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math., 117 (1983), 293-324. Zbl0531.57041MR86d:57025
  6. [6] M. DAVIS, Buildings are CAT(0), prépublication, Ohio State University, 1994. Zbl0978.51005
  7. [7] Y. GAO, Superrigidity for homomorphisms into isometry groups of non proper CAT(-1) spaces, prépublication, Yale University, 1995. Zbl0888.22008
  8. [8] M. GROMOV, Infinite groups as geometric objects, dans Proceedings of the International Congress of Mathematicians, Varsovia, 1983. 
  9. [9] A. HAEFLIGER, Complexes of groups and orbihedra, dans Group theory from a geometrical viewpoint, E. Ghys et A. Haefliger éd., World Scientific, 1991. Zbl0858.57013MR93m:20048
  10. [10] F. HAGLUND, Les polyèdres de Gromov, C. R. Acad. Sci., Paris, 313, sér. I, 603-606. Zbl0749.52011MR92m:57005
  11. [11] Y. LIU, Density of the commensurability group of uniform tree lattices, J. Alg., 165 (1994), 346-359. Zbl0813.20024MR95c:20036
  12. [12] G. MARGULIS, Discrete subgroups of semi-simple groups, Ergeb. Math. Grenz., 17, Springer Verlag, 1991. Zbl0732.22008MR92h:22021
  13. [13] G. MOUSSONG, Hyperbolic Coxeter groups, Thèse, Ohio State University, 1988. 
  14. [14] F. PAULIN, Construction of hyperbolic groups via hyperbolization of polyhedra, dans Group theory from a geometrical viewpoint, E. Ghys et A. Haefliger éd., World Scientific, 1991. 
  15. [15] M.A. RONAN, Lectures on buildings, Persp. Math., 7, Academic Press, 1989. Zbl0694.51001MR90j:20001
  16. [16] R. ZIMMER, Ergodic theory and semi-simple groups, Birkhauser, 1984. Zbl0571.58015MR86j:22014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.