Central sequences in the factor associated with Thompson’s group
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 4, page 1093-1106
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJolissaint, Paul. "Central sequences in the factor associated with Thompson’s group $F$." Annales de l'institut Fourier 48.4 (1998): 1093-1106. <http://eudml.org/doc/75310>.
@article{Jolissaint1998,
abstract = {We prove that the type $\{\rm II\}_\{1\}$ factor $L(F)$ generated by the regular representation of $F$ is isomorphic to its tensor product with the hyperfinite type $\{\rm II\}_\{1\}$ factor. This implies that the unitary group of $L(F)$ is contractible with respect to the topology defined by the natural Hilbertian norm.},
author = {Jolissaint, Paul},
journal = {Annales de l'institut Fourier},
keywords = {crossed products; centrally free actions; central sequences; Connes' classification of injective factors; weak form of amenability},
language = {eng},
number = {4},
pages = {1093-1106},
publisher = {Association des Annales de l'Institut Fourier},
title = {Central sequences in the factor associated with Thompson’s group $F$},
url = {http://eudml.org/doc/75310},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Jolissaint, Paul
TI - Central sequences in the factor associated with Thompson’s group $F$
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 1093
EP - 1106
AB - We prove that the type ${\rm II}_{1}$ factor $L(F)$ generated by the regular representation of $F$ is isomorphic to its tensor product with the hyperfinite type ${\rm II}_{1}$ factor. This implies that the unitary group of $L(F)$ is contractible with respect to the topology defined by the natural Hilbertian norm.
LA - eng
KW - crossed products; centrally free actions; central sequences; Connes' classification of injective factors; weak form of amenability
UR - http://eudml.org/doc/75310
ER -
References
top- [1] P.-L. AUBERT, Deux actions de SL(2, ℤ), In Théorie ergodique, Monographie de l'E.N.S. Math., 1981. Zbl0497.46047MR83m:46095
- [2] E. BÉDOS, On actions of amenable groups on II1-factors, J. Funct. Anal., 91 (1990), 404-414. Zbl0726.46048MR91i:46067
- [3] D. BISCH, On the existence of central sequences in subfactors, Trans. Amer. Math. Soc., 321 (1990), 117-128. Zbl0711.46048MR90m:46103
- [4] D. BISCH, Central sequences in subfactors II, Proc. Amer. Math. Soc., 121 (1994), 725-731. Zbl0814.46051MR94i:46079
- [5] M.G. BRIN, and C.C. SQUIER, Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79 (1985), 485-498. Zbl0563.57022MR86h:57033
- [6] J.W. CANNON, and W.J. FLOYD, and W.R. PARRY, Introductory notes on Richard Thompson's groups, E.N.S. Math., 42 (1996), 215-256. Zbl0880.20027MR98g:20058
- [7] A. CONNES, Outer conjugacy classes of automorphisms of factors, Ann. Scient. Ec. Norm. Sup., 8 (1975), 383-420. Zbl0342.46052MR52 #15031
- [8] A. CONNES, Classification of injective factors, Ann. of Math., 104 (1976), 73-115. Zbl0343.46042MR56 #12908
- [9] J. DIXMIER, and E.C. LANCE, Deux nouveaux facteurs de type II1, Invent. Math., 7 (1969), 226-234. Zbl0174.18701MR40 #1787
- [10] E.G. EFFROS, Property Γ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486. Zbl0321.22011MR50 #8100
- [11] S.M. GERSTEN, and J.R. STALLINGS (eds), Combinatorial Group Theory and Topology, in Annals of Math. Studies 111, Princeton University Press, 1987. Zbl0611.00010
- [12] P. JOLISSAINT, Moyennabilité intérieure du groupe F de Thompson, C.R. Acad. Sci. Paris, Série I, 325 (1997), 61-64. Zbl0883.43003MR98j:20049
- [13] D. MCDUFF, Central sequences and the hyperfinite factor, Proc. London Math. Soc., 21 (1970), 443-461. Zbl0204.14902MR43 #6737
- [14] A. OCNEANU, Actions of discrete amenable groups on von Neumann algebras, Lect. Notes in Math. 1138, Springer Verlag, 1985. Zbl0608.46035MR87e:46091
- [15] S. POPA and M. TAKESAKI, The topological structure of the unitary and automorphism groups of a factor, Comm. Math. Phys., 155 (1993), 93-101. Zbl0799.46074MR94h:46092
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.