Recovering the total singularity of a conormal potential from backscattering data
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 5, page 1513-1532
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJoshi, Mark S.. "Recovering the total singularity of a conormal potential from backscattering data." Annales de l'institut Fourier 48.5 (1998): 1513-1532. <http://eudml.org/doc/75328>.
@article{Joshi1998,
abstract = {The problem of recovering the singularities of a potential from backscattering data is studied. Let $\Omega $ be a smooth precompact domain in $\{\Bbb R\}^n$ which is convex (or normally accessible). Suppose $V_i = v + w_i$ with $v \in C^\{\infty \}_\{c\}(\{\Bbb R\}^n)$ and $w_i$ conormal to the boundary of $\Omega $ and supported inside $\bar\{\Omega \}$ then if the backscattering data of $V_1$ and $V_2$ are equal up to smoothing, we show that $w_1 - w_2$ is smooth.},
author = {Joshi, Mark S.},
journal = {Annales de l'institut Fourier},
keywords = {inverse scattering problem; backscattering; conormal potential; Lagrangian distributions; Lax-Phillips scattering theory},
language = {eng},
number = {5},
pages = {1513-1532},
publisher = {Association des Annales de l'Institut Fourier},
title = {Recovering the total singularity of a conormal potential from backscattering data},
url = {http://eudml.org/doc/75328},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Joshi, Mark S.
TI - Recovering the total singularity of a conormal potential from backscattering data
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 5
SP - 1513
EP - 1532
AB - The problem of recovering the singularities of a potential from backscattering data is studied. Let $\Omega $ be a smooth precompact domain in ${\Bbb R}^n$ which is convex (or normally accessible). Suppose $V_i = v + w_i$ with $v \in C^{\infty }_{c}({\Bbb R}^n)$ and $w_i$ conormal to the boundary of $\Omega $ and supported inside $\bar{\Omega }$ then if the backscattering data of $V_1$ and $V_2$ are equal up to smoothing, we show that $w_1 - w_2$ is smooth.
LA - eng
KW - inverse scattering problem; backscattering; conormal potential; Lagrangian distributions; Lax-Phillips scattering theory
UR - http://eudml.org/doc/75328
ER -
References
top- [1] J.J. DUISTERMAAT and L. HÖRMANDER, Fourier Integral Operators II, Acta Mathematicae, 128 (1972), 183-269. Zbl0232.47055MR52 #9300
- [2] A. GREENLEAF and G. UHLMANN, Recovering Singularities of a Potential from Singularities of Scattering Data, Commun. Math. Phys., 157 (1993), 549-572. Zbl0790.35112MR94j:35188
- [3] A. GREENLEAF and G. UHLMANN, Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232. Zbl0717.44001MR91i:58146
- [4] V. GUILLEMIN, G. UHLMANN, Oscillatory integrals with Singular Symbols, Duke Math. J., 48 (1981), 251-267. Zbl0462.58030MR82d:58065
- [5] L. HÖRMANDER, Fourier Integral Operators I, Acta Mathematicae, 127 (1971), 79-183. Zbl0212.46601MR52 #9299
- [6] L. HÖRMANDER, Analysis of Linear Partial Differential Operators, Vol. 1 to 4, Springer Verlag, Berlin, 1985. Zbl0601.35001
- [7] M.S. JOSHI, An Intrinsic Characterisation of Paired Lagrangian Distributions, Proc. Amer. Math. Soc., 125 (1997), N° 5, 1537-1543. Zbl0868.58078MR97g:46048
- [8] M.S. JOSHI, A Precise Calculus of Paired Lagrangian Distributions, M.I.T. thesis, 1994.
- [9] M.S. JOSHI, A Symbolic Contruction of the Forward Fundamental Solution of the Wave Operator, preprint. Zbl0917.35171
- [10] M.S. JOSHI and A. SA BARRETO, Recovering Asymptotics of Short Range Potentials, to appear in Commun. in Math. Phys. Zbl0920.58052
- [11] P. LAX, R. PHILLIPS, Scattering Theory, Revised Edition. New York, London: Academic Press, 1989. Zbl0697.35004MR90k:35005
- [12] R.B. MELROSE, Differential Analysis on Manifolds with Corners, forthcoming.
- [13] R.B. MELROSE, Marked Lagrangian Distributions, manuscript.
- [14] R.B. MELROSE and G. UHLMANN, Lagrangian Intersection and the Cauchy Problem, Comm. on Pure and Applied Math., 32 (1979), 482-512. Zbl0396.58006MR81d:58052
- [15] R. PHILIPS, Scattering Theory for the Wave Equation with Short Range Potential, Indiana Univ. Math. Journal, 31 (1982), 609-639. Zbl0465.35073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.