The trace of the generalized harmonic oscillator
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 1, page 351-373
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topWunsch, Jared. "The trace of the generalized harmonic oscillator." Annales de l'institut Fourier 49.1 (1999): 351-373. <http://eudml.org/doc/75340>.
@article{Wunsch1999,
abstract = {We study a geometric generalization of the time-dependent Schrödinger equation for the harmonic oscillator\begin\{\}\Big (D\_t+\{1\over 2\}\Delta +V\Big )\psi =0\qquad (0.1)\end\{\}where $\Delta $ is the Laplace-Beltrami operator with respect to a “scattering metric” on a compact manifold $M$ with boundary (the class of scattering metrics is a generalization of asymptotically Euclidean metrics on $\{\Bbb R\}^n$, radially compactified to the ball) and $V$ is a perturbation of $\{1\over 2\}\omega ^2x^\{-2\}$, with $x$ a boundary defining function for $M$ (e.g. $x=1/r$ in the compactified Euclidean case). Using the quadratic-scattering wavefront set, a generalization of Hörmander’s wavefront set that measures oscillation at $\partial M$ as well as singularities, we describe a propagation of singularities theorem for solutions of (0.1). This enables us to prove the following trace theorem : let\begin\{\}S\_\omega =\Big \lbrace \{L\over \omega \}:\text\{there\} \text\{exists\} \text\{a\} \text\{closed\} \text\{geodesic\} \text\{in\}~\partial M~\text\{of\} \text\{length\}~ \pm L\Big \rbrace \end\{\}\begin\{\}\cup \Big \lbrace \{n\pi \over \omega \}:\text\{there\} \text\{exists\} \text\{a\} \text\{geodesic\}~n\text\{-gon\} \text\{in\}~M~\text\{with\} \text\{vertices\}~\partial M\Big \rbrace \cup \lbrace 0\rbrace .\end\{\}Let $U(t)=\{\rm e\}^\{it(\{1\over 2\}\Delta +V)\}$ be the solution operator to the Cauchy problem for (0.1). Then under a non-trapping assumption for the geodesic flow on $\{\mathrel \{\mathop \{\hspace\{0.0pt\}M\}\limits ^\{\circ \}\}\}$, we have\begin\{\}\{\rm supp~sing~Tr\}\,U(t)\subset S\_\omega ,\end\{\}where $\{\rm Tr\}\,U(t)$ is the distribution given by integrating the Schwartz kernel of $U(t)$ over the diagonal in $M\times M$ or, alternatively, by $\sum _j\{\rm e\}^\{-it\lambda _j\}$, where $\lambda _j$ are the eigenvalues of $\{1\over 2\}\Delta +V$.},
author = {Wunsch, Jared},
journal = {Annales de l'institut Fourier},
keywords = {Schrödinger equation; harmonic oscillator; propagation of singularities; scattering metric; trace theorem},
language = {eng},
number = {1},
pages = {351-373},
publisher = {Association des Annales de l'Institut Fourier},
title = {The trace of the generalized harmonic oscillator},
url = {http://eudml.org/doc/75340},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Wunsch, Jared
TI - The trace of the generalized harmonic oscillator
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 1
SP - 351
EP - 373
AB - We study a geometric generalization of the time-dependent Schrödinger equation for the harmonic oscillator\begin{}\Big (D_t+{1\over 2}\Delta +V\Big )\psi =0\qquad (0.1)\end{}where $\Delta $ is the Laplace-Beltrami operator with respect to a “scattering metric” on a compact manifold $M$ with boundary (the class of scattering metrics is a generalization of asymptotically Euclidean metrics on ${\Bbb R}^n$, radially compactified to the ball) and $V$ is a perturbation of ${1\over 2}\omega ^2x^{-2}$, with $x$ a boundary defining function for $M$ (e.g. $x=1/r$ in the compactified Euclidean case). Using the quadratic-scattering wavefront set, a generalization of Hörmander’s wavefront set that measures oscillation at $\partial M$ as well as singularities, we describe a propagation of singularities theorem for solutions of (0.1). This enables us to prove the following trace theorem : let\begin{}S_\omega =\Big \lbrace {L\over \omega }:\text{there} \text{exists} \text{a} \text{closed} \text{geodesic} \text{in}~\partial M~\text{of} \text{length}~ \pm L\Big \rbrace \end{}\begin{}\cup \Big \lbrace {n\pi \over \omega }:\text{there} \text{exists} \text{a} \text{geodesic}~n\text{-gon} \text{in}~M~\text{with} \text{vertices}~\partial M\Big \rbrace \cup \lbrace 0\rbrace .\end{}Let $U(t)={\rm e}^{it({1\over 2}\Delta +V)}$ be the solution operator to the Cauchy problem for (0.1). Then under a non-trapping assumption for the geodesic flow on ${\mathrel {\mathop {\hspace{0.0pt}M}\limits ^{\circ }}}$, we have\begin{}{\rm supp~sing~Tr}\,U(t)\subset S_\omega ,\end{}where ${\rm Tr}\,U(t)$ is the distribution given by integrating the Schwartz kernel of $U(t)$ over the diagonal in $M\times M$ or, alternatively, by $\sum _j{\rm e}^{-it\lambda _j}$, where $\lambda _j$ are the eigenvalues of ${1\over 2}\Delta +V$.
LA - eng
KW - Schrödinger equation; harmonic oscillator; propagation of singularities; scattering metric; trace theorem
UR - http://eudml.org/doc/75340
ER -
References
top- [1] J. CHAZARAIN, Formule de Poisson pour les variétés riemanniennes, Inv. Math., 24 (1974), 65-82. Zbl0281.35028MR49 #8062
- [2] J. CHAZARAIN, Spectre d'un Hamiltonien quantique et méchanique classique, Comm. PDE, 5 (1980), 599-644. Zbl0449.35042MR82d:58064
- [3] Y. COLIN DE VERDIÈRE, Spectre de laplacien et longueurs des géodésiques périodiques I, Comp. Math., 27 (1973), 83-106. Zbl0272.53034MR50 #1293
- [4] Y. COLIN DE VERDIÈRE, Spectre du laplacien et longueurs des géodésiques périodiques II, Comp. Math., 27 (1973), 159-184. Zbl0281.53036MR50 #1293
- [5] W. CRAIG, T. KAPPELER, W. STRAUSS, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., 48 (1995), 769-860. Zbl0856.35106MR96m:35057
- [6] J.J. DUISTERMAAT, V.W. GUILLEMIN, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math., 29 (1975), 39-79. Zbl0307.35071MR53 #9307
- [7] D. FUJIWARA, Remarks on the convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559-600. Zbl0457.35026MR83c:81030
- [8] L. KAPITANSKI, I. RODNIANSKI, K. YAJIM, On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal., 9 (1997), 77-106. Zbl0892.35035MR98m:35033
- [9] R.B. MELROSE, Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and scattering theory, M. Ikawa ed., Marcel Dekker, 1994. Zbl0837.35107
- [10] R.B. MELROSE, M. ZWORSKI, Scattering metrics and geodesic flow a infinity, Inv. Math., 124 (1996), 389-436. Zbl0855.58058MR96k:58230
- [11] F. TREVES, Parametrices for a class of Schrödinger equations, Comm. Pure Appl. Math., 48 (1995), 13-78. Zbl0832.35160MR95m:35050
- [12] A. WEINSTEIN, A symbol class for some Schrödinger equations on Rn, Amer. J. Math., 107 (1985), 1-21. Zbl0574.35023MR87a:58150
- [13] J. WUNSCH, Propagation of singularities and growth for Schrödinger operators, Duke Math. J., to appear. Zbl0953.35121
- [14] K. YAJIMA, Smoothness and non-smoothness of the fundamental solution of time-dependent Schrödinger equations, Comm. Math. Phys., 181 (1996), 605-629. Zbl0883.35022MR97j:35001
- [15] S. ZELDITCH, Reconstruction of singularities for solutions of Schrödinger equations, Comm. Math. Phys., 90 (1983), 1-26. Zbl0554.35031MR85d:81029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.