Geometric subgroups of surface braid groups

Luis Paris; Dale Rolfsen

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 2, page 417-472
  • ISSN: 0373-0956

Abstract

top
Let M be a surface, let N be a subsurface, and let n m be two positive integers. The inclusion of N in M gives rise to a homomorphism from the braid group B n N with n strings on N to the braid group B m M with m strings on M . We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of π 1 N in π 1 M . Then we calculate the commensurator, the normalizer and the centralizer of B n N in B m M for large surface braid groups.

How to cite

top

Paris, Luis, and Rolfsen, Dale. "Geometric subgroups of surface braid groups." Annales de l'institut Fourier 49.2 (1999): 417-472. <http://eudml.org/doc/75344>.

@article{Paris1999,
abstract = {Let $M$ be a surface, let $N$ be a subsurface, and let $n\le m$ be two positive integers. The inclusion of $N$ in $M$ gives rise to a homomorphism from the braid group $B_nN$ with $n$ strings on $N$ to the braid group $B_mM$ with $m$ strings on $M$. We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of $\pi _1 N$ in $\pi _1M$. Then we calculate the commensurator, the normalizer and the centralizer of $B_nN$ in $B_mM$ for large surface braid groups.},
author = {Paris, Luis, Rolfsen, Dale},
journal = {Annales de l'institut Fourier},
keywords = {braid groups; surfaces; commensurators; normalizers; centralizers; subgroups; fundamental groups},
language = {eng},
number = {2},
pages = {417-472},
publisher = {Association des Annales de l'Institut Fourier},
title = {Geometric subgroups of surface braid groups},
url = {http://eudml.org/doc/75344},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Paris, Luis
AU - Rolfsen, Dale
TI - Geometric subgroups of surface braid groups
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 2
SP - 417
EP - 472
AB - Let $M$ be a surface, let $N$ be a subsurface, and let $n\le m$ be two positive integers. The inclusion of $N$ in $M$ gives rise to a homomorphism from the braid group $B_nN$ with $n$ strings on $N$ to the braid group $B_mM$ with $m$ strings on $M$. We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of $\pi _1 N$ in $\pi _1M$. Then we calculate the commensurator, the normalizer and the centralizer of $B_nN$ in $B_mM$ for large surface braid groups.
LA - eng
KW - braid groups; surfaces; commensurators; normalizers; centralizers; subgroups; fundamental groups
UR - http://eudml.org/doc/75344
ER -

References

top
  1. [Ar1] E. ARTIN, Theorie der Zöpfe, Abh. Math. Sem. Hamburg, 4 (1926), 47-72. Zbl51.0450.01JFM51.0450.01
  2. [Ar2] E. ARTIN, Theory of braids, Annals of Math., 48 (1946), 101-126. Zbl0030.17703MR8,367a
  3. [Bi1] J.S. BIRMAN, On braid groups, Comm. Pure Appl. Math., 22 (1969), 41-72. Zbl0157.30904MR38 #2764
  4. [Bi2] J.S. BIRMAN, Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton University Press, 1973. Zbl0305.57013
  5. [Bi3] J.S. BIRMAN, Mapping class groups of surfaces, Contemporary Mathematics, 78 (1988), 13-43. Zbl0663.57008MR90g:57013
  6. [Br] K.S. BROWN, Cohomology of groups, Springer-Verlag, New York, 1982. Zbl0584.20036MR83k:20002
  7. [Ch] W. CHOW, On the algebraic braid group, Annals of Math., 49 (1948), 654-658. Zbl0033.01002MR10,98e
  8. [Co] R. COHEN, Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., 78 (1988), 167-206. Zbl0682.55011
  9. [Ep] D.B.A. EPSTEIN, Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83-107. Zbl0136.44605MR35 #4938
  10. [FaN] E. FADELL, L. NEUWIRTH, Configuration spaces, Math. Scand., 10 (1962), 111-118. Zbl0136.44104MR25 #4537
  11. [FoN] R.H. FOX, L. NEUWIRTH, The braid groups, Math. Scand., 10 (1962), 119-126. Zbl0117.41101MR27 #742
  12. [FaV] E. FADELL, J. VAN BUSKIRK, The braid groups of E2 and S2, Duke Math. J., 29 (1962), 243-258. Zbl0122.17804MR25 #4539
  13. [FRZ] R. FENN, D. ROLFSEN, J. ZHU, Centralisers in the braid group and singular braid monoid, L'Enseignement Math., 42 (1996), 75-96. Zbl0869.20024MR97h:20047
  14. [Ga] F.A. GARSIDE, The braid groups and other groups, Oxford Quart. J. Math., 20 (1969), 235-254. Zbl0194.03303MR40 #2051
  15. [Go] C.H. GOLDBERG, An exact sequence of braid groups, Math. Scand., 33 (1973), 69-82. Zbl0285.57002MR48 #12501
  16. [GV] R. GILLETTE, J. VAN BUSKIRK, The word problem and its consequences for the braid groups and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc., 131 (1968), 277-296. Zbl0169.55303MR38 #221
  17. [LS] R.C. LYNDON, P.E. SCHUPP, Combinatorial group theory, Springer-Verlag, Berlin, 1977. Zbl0368.20023MR58 #28182
  18. [Ro] D. ROLFSEN, Braid subgroup normalisers and commensurators and induced representations, Invent. Math., 130 (1997), 575-587. Zbl0897.20031MR98j:20048
  19. [Sc] G.P. SCOTT, Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc., 68 (1970), 605-617. Zbl0203.56302MR42 #3786
  20. [Se] J.-P. SERRE, Arbres, amalgames, SL2, Astérisque, Soc. Math. France, 46 (1977). Zbl0369.20013MR57 #16426
  21. [Va] J. VAN BUSKIRK, Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc, 122 (1966), 81-97. Zbl0138.19103MR32 #6440

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.