Geometric subgroups of surface braid groups
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 2, page 417-472
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topParis, Luis, and Rolfsen, Dale. "Geometric subgroups of surface braid groups." Annales de l'institut Fourier 49.2 (1999): 417-472. <http://eudml.org/doc/75344>.
@article{Paris1999,
abstract = {Let $M$ be a surface, let $N$ be a subsurface, and let $n\le m$ be two positive integers. The inclusion of $N$ in $M$ gives rise to a homomorphism from the braid group $B_nN$ with $n$ strings on $N$ to the braid group $B_mM$ with $m$ strings on $M$. We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of $\pi _1 N$ in $\pi _1M$. Then we calculate the commensurator, the normalizer and the centralizer of $B_nN$ in $B_mM$ for large surface braid groups.},
author = {Paris, Luis, Rolfsen, Dale},
journal = {Annales de l'institut Fourier},
keywords = {braid groups; surfaces; commensurators; normalizers; centralizers; subgroups; fundamental groups},
language = {eng},
number = {2},
pages = {417-472},
publisher = {Association des Annales de l'Institut Fourier},
title = {Geometric subgroups of surface braid groups},
url = {http://eudml.org/doc/75344},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Paris, Luis
AU - Rolfsen, Dale
TI - Geometric subgroups of surface braid groups
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 2
SP - 417
EP - 472
AB - Let $M$ be a surface, let $N$ be a subsurface, and let $n\le m$ be two positive integers. The inclusion of $N$ in $M$ gives rise to a homomorphism from the braid group $B_nN$ with $n$ strings on $N$ to the braid group $B_mM$ with $m$ strings on $M$. We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of $\pi _1 N$ in $\pi _1M$. Then we calculate the commensurator, the normalizer and the centralizer of $B_nN$ in $B_mM$ for large surface braid groups.
LA - eng
KW - braid groups; surfaces; commensurators; normalizers; centralizers; subgroups; fundamental groups
UR - http://eudml.org/doc/75344
ER -
References
top- [Ar1] E. ARTIN, Theorie der Zöpfe, Abh. Math. Sem. Hamburg, 4 (1926), 47-72. Zbl51.0450.01JFM51.0450.01
- [Ar2] E. ARTIN, Theory of braids, Annals of Math., 48 (1946), 101-126. Zbl0030.17703MR8,367a
- [Bi1] J.S. BIRMAN, On braid groups, Comm. Pure Appl. Math., 22 (1969), 41-72. Zbl0157.30904MR38 #2764
- [Bi2] J.S. BIRMAN, Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton University Press, 1973. Zbl0305.57013
- [Bi3] J.S. BIRMAN, Mapping class groups of surfaces, Contemporary Mathematics, 78 (1988), 13-43. Zbl0663.57008MR90g:57013
- [Br] K.S. BROWN, Cohomology of groups, Springer-Verlag, New York, 1982. Zbl0584.20036MR83k:20002
- [Ch] W. CHOW, On the algebraic braid group, Annals of Math., 49 (1948), 654-658. Zbl0033.01002MR10,98e
- [Co] R. COHEN, Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., 78 (1988), 167-206. Zbl0682.55011
- [Ep] D.B.A. EPSTEIN, Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83-107. Zbl0136.44605MR35 #4938
- [FaN] E. FADELL, L. NEUWIRTH, Configuration spaces, Math. Scand., 10 (1962), 111-118. Zbl0136.44104MR25 #4537
- [FoN] R.H. FOX, L. NEUWIRTH, The braid groups, Math. Scand., 10 (1962), 119-126. Zbl0117.41101MR27 #742
- [FaV] E. FADELL, J. VAN BUSKIRK, The braid groups of E2 and S2, Duke Math. J., 29 (1962), 243-258. Zbl0122.17804MR25 #4539
- [FRZ] R. FENN, D. ROLFSEN, J. ZHU, Centralisers in the braid group and singular braid monoid, L'Enseignement Math., 42 (1996), 75-96. Zbl0869.20024MR97h:20047
- [Ga] F.A. GARSIDE, The braid groups and other groups, Oxford Quart. J. Math., 20 (1969), 235-254. Zbl0194.03303MR40 #2051
- [Go] C.H. GOLDBERG, An exact sequence of braid groups, Math. Scand., 33 (1973), 69-82. Zbl0285.57002MR48 #12501
- [GV] R. GILLETTE, J. VAN BUSKIRK, The word problem and its consequences for the braid groups and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc., 131 (1968), 277-296. Zbl0169.55303MR38 #221
- [LS] R.C. LYNDON, P.E. SCHUPP, Combinatorial group theory, Springer-Verlag, Berlin, 1977. Zbl0368.20023MR58 #28182
- [Ro] D. ROLFSEN, Braid subgroup normalisers and commensurators and induced representations, Invent. Math., 130 (1997), 575-587. Zbl0897.20031MR98j:20048
- [Sc] G.P. SCOTT, Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc., 68 (1970), 605-617. Zbl0203.56302MR42 #3786
- [Se] J.-P. SERRE, Arbres, amalgames, SL2, Astérisque, Soc. Math. France, 46 (1977). Zbl0369.20013MR57 #16426
- [Va] J. VAN BUSKIRK, Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc, 122 (1966), 81-97. Zbl0138.19103MR32 #6440
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.