On the structure of the centralizer of a braid
Juan González-Meneses; Bert Wiest[1]
- [1] Université de Rennes 1, Institut Mathématique, Campus de Beaulieu, 35042 Rennes Cedex (France)
Annales scientifiques de l'École Normale Supérieure (2004)
- Volume: 37, Issue: 5, page 729-757
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGonzález-Meneses, Juan, and Wiest, Bert. "On the structure of the centralizer of a braid." Annales scientifiques de l'École Normale Supérieure 37.5 (2004): 729-757. <http://eudml.org/doc/82643>.
@article{González2004,
affiliation = {Université de Rennes 1, Institut Mathématique, Campus de Beaulieu, 35042 Rennes Cedex (France)},
author = {González-Meneses, Juan, Wiest, Bert},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {mixed braid groups; Artin groups; centralizers; generating sets},
language = {eng},
number = {5},
pages = {729-757},
publisher = {Elsevier},
title = {On the structure of the centralizer of a braid},
url = {http://eudml.org/doc/82643},
volume = {37},
year = {2004},
}
TY - JOUR
AU - González-Meneses, Juan
AU - Wiest, Bert
TI - On the structure of the centralizer of a braid
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 5
SP - 729
EP - 757
LA - eng
KW - mixed braid groups; Artin groups; centralizers; generating sets
UR - http://eudml.org/doc/82643
ER -
References
top- [1] Arnold V.I., The cohomology ring of the group of dyed braids, Mat. Zametki5 (1969) 227-231. Zbl0277.55002MR242196
- [2] Benardete D., Gutierrez M., Nitecki Z., A combinatorial approach to reducibility of mapping classes, Contemporary Math.150 (1993) 1-31. Zbl0804.57005MR1234257
- [3] Benardete D., Gutierrez M., Nitecki Z., Braids and the Nielsen–Thurston classification, J. Knot Theory Ramifications4 (1995) 549-618. Zbl0874.57010MR1361083
- [4] Bessis D., Digne F., Michel J., Springer theory in braid groups and the Birman–Ko–Lee monoid, Pacific J. Math.205 (2) (2002) 287-309. Zbl1056.20023MR1922736
- [5] Bestvina M., Haendel M., Train-tracks for surface homeomorphisms, Topology34 (1995) 109-140. Zbl0837.57010MR1308491
- [6] Birman J., Braids, Links, and Mapping Class Groups, Annals of Math. Studies, vol. 82, Princeton University Press, 1975. Zbl0305.57013MR375281
- [7] Birman J., Ko K.H., Lee S.J., A new approach to the word and conjugacy problems in the braid groups, Adv. Math.139 (1998) 322-353. Zbl0937.20016MR1654165
- [8] Birman J., Lubotzky A., McCarthy J., Abelian and solvable subgroups of the mapping class groups, Duke Math. J.50 (1983) 1107-1120. Zbl0551.57004MR726319
- [9] Brinkmann P., An implementation of the Bestvina-Handel algorithm for surface homeomorphisms, Experiment. Math.9 (2000) 235-240, Computer program available at, http://www.math.uiuc.edu/~brinkman/software/train/. Zbl0982.57005MR1780208
- [10] Burde G., Über Normalisatoren der Zopfgruppe, Abh. Math. Sem. Univ. Hamburg27 (1964) 97-115. Zbl0134.43104MR170954
- [11] Constantin A., Kolev B., The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. (2)40 (3–4) (1994) 193-204. Zbl0852.57012MR1309126
- [12] Eilenberg S., Sur les transformations périodiques de la surface de sphère, Fund. Math.22 (1934) 28-41. Zbl0008.37109
- [13] El-Rifai E.A., Morton H.R., Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2)45 (180) (1994) 479-497. Zbl0839.20051MR1315459
- [14] Fathi A., Laudenbach F., Poenaru V., Travaux de Thurston sur les surfaces – séminaire Orsay, Astérisque, vols. 66–67, Société Math. de France, 1991. Zbl0406.00016MR1134426
- [15] Fenn R., Rolfsen D., Zhu J., Centralisers in the braid group and singular braid monoid, Enseign. Math.42 (1996) 75-96. Zbl0869.20024MR1395042
- [16] Franco N., González-Meneses J., Conjugacy problem for braid groups and Garside groups, J. Algebra266 (2003) 112-132. Zbl1043.20019MR1994532
- [17] Franco N., González-Meneses J., Computation of centralizers in braid groups and Garside groups, Rev. Mat. Iberoamericana19 (2003) 367-384. Zbl1064.20040MR2023190
- [18] Garside F.A., The braid group and other groups, Quart. J. Math. Oxford20 (1969) 235-254. Zbl0194.03303MR248801
- [19] Gebhardt V., A new approach to the conjugacy problem in Garside groups, Preprint, math.GT/0306199. Zbl1105.20032MR2166805
- [20] Hall T., Computer implementation of Bestvina-Handel algorithm, available at, http://www.liv.ac.uk/maths/PURE/MIN_SET/CONTENT/members/T_Hall.html.
- [21] Ivanov N.V., Subgroups of Teichmüller Modular Groups, Translations of Mathematical Monographs, vol. 115, AMS, 1992. Zbl0776.57001MR1195787
- [22] Ivanov N.V., Talk at the special session “Mapping class groups and the geometric theory of Teichmüller spaces” at the 974th meeting of the AMS, Ann Harbour, MI, March 1–3, 2002.
- [23] Ivanov N.V., Examples of centralizers in the Artin braid groups, Preprint, math.GT/0306418.
- [24] de Kerékjártó B., Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Annalen80 (1919) 3-7. JFM47.0526.05
- [25] Los J., Pseudo-Anosov maps and invariant train tracks in the disc: a finite algorithm, Proc. London Math. Soc. (3)66 (1993) 400-430. Zbl0788.58039MR1199073
- [26] Makanin G.S., On normalizers in the braid group, Mat. Sb.86 (128) (1971) 171-179. Zbl0229.20035MR347988
- [27] Manfredini S., Some subgroups of Artin's braid group. Special issue on braid groups and related topics (Jerusalem, 1995), Topology Appl.78 (1–2) (1997) 123-142. Zbl0965.20016MR1465028
- [28] Orevkov S.Yu., Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves, J. Knot Theory Ramifications10 (7) (2001) 1005-1023. Zbl1030.20026MR1867106
- [29] Paris L., Rolfsen D., Geometric subgroups of surface braid groups, Ann. Inst. Fourier49 (1999) 101-156. Zbl0962.20028MR1697370
- [30] Penner R.C., Harer J.L., Combinatorics of Train Tracks, Annals of Math., vol. 125, Princeton University Press, Princeton, NJ, 1992. Zbl0765.57001MR1144770
- [31] Sibert H., Extraction of roots in Garside groups, Comm. Algebra30 (6) (2002) 2915-2927. Zbl1007.20036MR1908246
- [32] Styšnev V.B., Izv. Akad. Nauk SSSR Ser. Mat.42 (5) (1978) 1120-1131, 1183. MR513916
- [33] Thurston W.P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.)19 (1988) 417-431. Zbl0674.57008MR956596
- [34] Thurston W.P., Braid Groups, in: Epstein D.B.A., Cannon J.W., Holt D.F., Levy S.V.F., Paterson M.S., Thurston W.P. (Eds.), Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992, Chapter 9. Zbl0764.20017MR1161694
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.