Quelques valeurs prises par les polynômes de Macdonald décalés

Michel Lassalle

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 2, page 543-561
  • ISSN: 0373-0956

Abstract

top
We give explicit expressions for some generalized binomial coefficients associated with Macdonald polynomials, i.e., the value at some special points of shifted Macdonald polynomials. These expressions are obtained in terms of q -basic hypergeometric series.

How to cite

top

Lassalle, Michel. "Quelques valeurs prises par les polynômes de Macdonald décalés." Annales de l'institut Fourier 49.2 (1999): 543-561. <http://eudml.org/doc/75346>.

@article{Lassalle1999,
abstract = {Nous explicitons la valeur de certains des coefficients binomiaux généralisés associés aux polynômes de Macdonald, c’est-à-dire la valeur en certains points particuliers des polynômes de Macdonald décalés. Ces expressions font intervenir les fonctions hypergéométriques de base $q$.},
author = {Lassalle, Michel},
journal = {Annales de l'institut Fourier},
keywords = {(Shifted) Macdonald polynomials; generalized binomial formula; generalized binomial coefficients; basic hypergeometric functions},
language = {fre},
number = {2},
pages = {543-561},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quelques valeurs prises par les polynômes de Macdonald décalés},
url = {http://eudml.org/doc/75346},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Lassalle, Michel
TI - Quelques valeurs prises par les polynômes de Macdonald décalés
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 2
SP - 543
EP - 561
AB - Nous explicitons la valeur de certains des coefficients binomiaux généralisés associés aux polynômes de Macdonald, c’est-à-dire la valeur en certains points particuliers des polynômes de Macdonald décalés. Ces expressions font intervenir les fonctions hypergéométriques de base $q$.
LA - fre
KW - (Shifted) Macdonald polynomials; generalized binomial formula; generalized binomial coefficients; basic hypergeometric functions
UR - http://eudml.org/doc/75346
ER -

References

top
  1. [1] J. KANEKO, Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal., 24 (1993), 1086-1110. Zbl0783.33008
  2. [2] F. KNOP, Symmetric and non-symmetric quantum Capelli polynomials, to appear. Zbl0954.05049
  3. [3] M. LASSALLE, Coefficients binomiaux généralisés et polynômes de Macdonald, J. Funct. Anal., 158 (1998), 289-324. Zbl0914.33012
  4. [4] M. LASSALLE, Une formule du binôme généralisée pour les polynômes de Jack, C. R. Acad. Sci. Paris, Sér. I Math., 310 (1990), 253-256. Zbl0698.33010
  5. [5] M. LASSALLE, Coefficients du binôme généralisés, C. R. Acad. Sci. Paris, Sér. I Math., 310 (1990), 257-260. Zbl0733.33001
  6. [6] M. LASSALLE, Some combinatorial conjectures for shifted Jack polynomials, Ann. Combinatorics, 2 (1998), 145-163. Zbl0933.33014
  7. [7] I. G. MACDONALD, Symmetric functions and Hall polynomials, second edition, Clarendon Press, Oxford, 1995. Zbl0824.05059
  8. [8] A. OKOUNKOV, (Shifted) Macdonald polynomials: q-integral representation and combinatorial formula, Compositio Math., 112 (1998), 147-182. Zbl0897.05085
  9. [9] A. OKOUNKOV, Binomial formula for Macdonald polynomials and applications, Math. Res. Lett., 4 (1997), 533-553. Zbl0911.33012
  10. [10] A. OKOUNKOV, G. OLSHANSKI, Shifted Jack polynomials, binomial formula and applications, Math. Res. Lett., 4 (1997), 69-78. Zbl0995.33013
  11. [11] A. OKOUNKOV, G. OLSHANSKI, Shifted Schur functions, St. Petersburg Math. J., 9 (1998). 
  12. [12] S. SAHI, Interpolation, integrality, and a generalization of Macdonald's polynomials, Internat. Math. Res. Notices, 10 (1996), 457-471. Zbl0861.05063MR99j:05189b

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.