A normalization formula for the Jack polynomials in superspace and an identity on partitions.
In this paper we apply techniques of spherical harmonic analysis to prove a local limit theorem, a rate of escape theorem, and a central limit theorem for isotropic random walks on arbitrary thick regular affine buildings of irreducible type. This generalises results of Cartwright and Woess where buildings are studied, Lindlbauer and Voit where buildings are studied, and Sawyer where homogeneous trees are studied (these are buildings).
Nous explicitons la valeur de certains des coefficients binomiaux généralisés associés aux polynômes de Macdonald, c’est-à-dire la valeur en certains points particuliers des polynômes de Macdonald décalés. Ces expressions font intervenir les fonctions hypergéométriques de base .