Non-Sunada graphs

Robert Brooks

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 2, page 707-725
  • ISSN: 0373-0956

Abstract

top
We consider the question of whether there is a converse to the Sunada Theorem in the context of k -regular graphs. We give a weak converse to the Sunada Theorem, which gives a necessary and sufficient condition for two graphs to be isospectral in terms of a Sunada-like condition, and show by example that a strong converse does not hold.

How to cite

top

Brooks, Robert. "Non-Sunada graphs." Annales de l'institut Fourier 49.2 (1999): 707-725. <http://eudml.org/doc/75352>.

@article{Brooks1999,
abstract = {We consider the question of whether there is a converse to the Sunada Theorem in the context of $k$-regular graphs. We give a weak converse to the Sunada Theorem, which gives a necessary and sufficient condition for two graphs to be isospectral in terms of a Sunada-like condition, and show by example that a strong converse does not hold.},
author = {Brooks, Robert},
journal = {Annales de l'institut Fourier},
keywords = {-regular graphs; Laplacian; isospectrality},
language = {eng},
number = {2},
pages = {707-725},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non-Sunada graphs},
url = {http://eudml.org/doc/75352},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Brooks, Robert
TI - Non-Sunada graphs
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 2
SP - 707
EP - 725
AB - We consider the question of whether there is a converse to the Sunada Theorem in the context of $k$-regular graphs. We give a weak converse to the Sunada Theorem, which gives a necessary and sufficient condition for two graphs to be isospectral in terms of a Sunada-like condition, and show by example that a strong converse does not hold.
LA - eng
KW - -regular graphs; Laplacian; isospectrality
UR - http://eudml.org/doc/75352
ER -

References

top
  1. [AG] D. ANGLUIN, A. GARDINER, Finite Common Coverings of Pairs of Graphs, J. Comb. Theory, B 30 (1981), 184-187. Zbl0426.05044MR82g:05071
  2. [Br] R. BROOKS, Twist Surfaces, to appear in Proc. Cortona Conf. Zbl0947.30032
  3. [BGG] R. BROOKS, R. GORNET, W. GUSTAFSON, Mutually Isospectral Riemann Surfaces, Adv. Math., 138 (1998), 306-322. Zbl0997.53031MR99k:58184
  4. [BPP] R. BROOKS, P. PETERSEN, P. PERRY, On Cheeger's Inequality, Comm. Math. Helv., 68 (1993), 599-621. Zbl0809.53049MR94k:58150
  5. [CDGT] D. CVETKOVIC, M. DOOB, I. GUTMAN, A. TARGASEV, Recent Results in the Theory of Graph Spectra, Ann. Disc. Math. 36, North Holland, 1988. Zbl0634.05054MR89d:05130
  6. [GGSWW] C. GORDON, R. GORNET, D. SCHUETH, D. WEBB, E. WILSON, Isospectral Deformations of Closed Riemannian Manifolds with Different Scalar Curvature, Ann. Inst. Fourier, 48-2 (1998), 593-607. Zbl0922.58083MR99b:53049
  7. [Le] F. LEIGHTON, Finite Common Coverings of Graphs, J. Comb. Theory, B 33 (1982), 231-238. Zbl0488.05033MR85a:05068
  8. [LMZ] A. LUBOTZKY, S. MOZES, R. ZIMMER, Superrigidity for the Commensurability Group of Tree Lattices, Comm. Math. Helv., 69 (1994), 523-548. Zbl0839.22011MR96a:20032
  9. [Pe1] H. PESCE, Quelques applications de la théorie des représentations en géométrie spectrale, Thèse d'habilitation, Grenoble, 1997; Rendiconti di Mathematica, 18 (1998), 1-64. Zbl0923.58056MR99j:58215
  10. [Pe2] H. PESCE, Une réciproque générique du théorème de Sunada, Compositio Math., 109 (1997), 357-365. Zbl0889.58080MR98k:58232
  11. [Pe3] H. PESCE, Variétés isospectrales et représentations de groupes, in Brooks, Gordon, and Perry ed., Geometry of the Spectrum, Contemp. Math, 173 (1994), 231-240. Zbl0814.58041MR95k:58169
  12. [Qu] G. QUENELL, The Combinatorics of Seidel Switching, preprint. 
  13. [Su] T. SUNADA, Riemannian Coverings and Isospectral Manifolds, Ann. Math., 121 (1985), 169-186. Zbl0585.58047MR86h:58141

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.