Combinatorics and topology - François Jaeger's work in knot theory

Louis H. Kauffman

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 3, page 927-953
  • ISSN: 0373-0956

Abstract

top
François Jaeger found a number of beautiful connections between combinatorics and the topology of knots and links, culminating in an intricate relationship between link invariants and the Bose-Mesner algebra of an association scheme. This paper gives an introduction to this connection.

How to cite

top

Kauffman, Louis H.. "Combinatorics and topology - François Jaeger's work in knot theory." Annales de l'institut Fourier 49.3 (1999): 927-953. <http://eudml.org/doc/75371>.

@article{Kauffman1999,
abstract = {François Jaeger found a number of beautiful connections between combinatorics and the topology of knots and links, culminating in an intricate relationship between link invariants and the Bose-Mesner algebra of an association scheme. This paper gives an introduction to this connection.},
author = {Kauffman, Louis H.},
journal = {Annales de l'institut Fourier},
keywords = {knot; link; Homfly polynomial; spin model; association scheme; Bose-Mesner algebra},
language = {eng},
number = {3},
pages = {927-953},
publisher = {Association des Annales de l'Institut Fourier},
title = {Combinatorics and topology - François Jaeger's work in knot theory},
url = {http://eudml.org/doc/75371},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Kauffman, Louis H.
TI - Combinatorics and topology - François Jaeger's work in knot theory
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 3
SP - 927
EP - 953
AB - François Jaeger found a number of beautiful connections between combinatorics and the topology of knots and links, culminating in an intricate relationship between link invariants and the Bose-Mesner algebra of an association scheme. This paper gives an introduction to this connection.
LA - eng
KW - knot; link; Homfly polynomial; spin model; association scheme; Bose-Mesner algebra
UR - http://eudml.org/doc/75371
ER -

References

top
  1. [1] K. REIDEMEISTER, Julius Springer, Berlin, 1932 ; Chelsea Pub. Co., New York, 1948. 
  2. [2] F. JAEGER, On Tutte polynomials and link polynomials, Proceedings AMS, 103, n° 2 (1988), 647-654. Zbl0665.57006MR89i:57004
  3. [3] F. JAEGER, Graph colourings and link invariants, in Graph Colourings, R. Nelson and R.J. Wilson ed., Pitman Research Notes in Mathematics, Series 218, Longman Scientific and Technical, 1990, 97-114. Zbl0693.05032MR1210071
  4. [4] F. JAEGER, Composition products and models for the Homfly polymomial, L'Enseignement Math., 35 (1989), 323-361. Zbl0705.57004MR91a:57003
  5. [5] F. JAEGER, A combinatorial model for the Homfly polynomial, Europ. J. Combinatorics, 11 (1990), 549-558. Zbl0733.05039MR92e:57008a
  6. [6] F. JAEGER, D. WELSH, D. VERTIGAN, On the Computational Complexity of the Jones and Tutte polynomials, Proc. Cambridge Phil. Soc., 108 (1990), 5-53. Zbl0747.57006MR91h:05038
  7. [7] F. JAEGER, Invariants de graphes matroïdes, nœuds: modèles et complexité, Actes des Journées du PRC Mathématiques et Informatique, Paris, 6-7 mars 1989, M. Las Vergnas éd., 86-105. 
  8. [8] F. JAEGER, Théorie des Nœuds et Combinatoire, Actes de la Deuxième Rencontre Franco-Algérienne de Recherche Opérationnelle, USTHB, mai 1992. 
  9. [9] F. JAEGER, Circuit partitions and the Homfly polynomial of closed braids, Trans. Am. Math. Soc., 323, n° 1 (1991), 449-463. Zbl0725.57003MR91c:57008
  10. [10] F. JAEGER, Strongly regular graphs and spin models for the Kauffman polynomial, Geom. Dedicata, 44 (1992), 23-52. Zbl0773.57005MR94e:57008
  11. [11] F. JAEGER, On the Kauffman polynomial of planar matroids, Proceedings of the Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, Elsevier, 1992, 117-127. Zbl0763.05021MR94d:57016
  12. [12] F. JAEGER, Plane graphs and link invariants, Discrete Math., 114 (1993), 253-264. Zbl0783.05043MR94h:57003
  13. [13] F. JAEGER, Modèles à spins, invariants d'entrelacs et schémas d'association, Actes du Séminaire Lotharingien de Combinatoire, 30e session, R. Konig et V. Strehl éd., IRMA, Strasbourg (1993), 43-60. 
  14. [14] F. JAEGER, E. BANNAI, A. SALI, Classification of small spin models, Kyushu J. Math., 48 (1994), 185-200. Zbl0823.05065MR94m:57008
  15. [15] F. JAEGER, L. H. KAUFFMAN, H. SALEUR, The Conway polynomial in ℝ3 and in thickened surfaces: a new determinant formulation, J. Comb. Theory (B), 61, n° 2 (1994), 237-259. Zbl0802.57003MR95d:57004
  16. [16] F. JAEGER, On spin models, triply regular association schemes, and duality, J. Algebraic Comb., 4, n° 2 (1995), 103-144. Zbl0820.05063MR96k:05211
  17. [17] F. JAEGER, Spin models for link invariants, in Surveys in Combinatorics 1995, Peter Rowlinson ed., London Mathematical Society Lecture Notes Series 218, Cambridge University Press, 1995, 71-101. Zbl0831.05064MR96j:57008
  18. [18] F. JAEGER, Towards a classification of spin models in terms of association schemes, in Progress in Algebraic Combinatorics, Advanced Studies in Pure Mathematics 24, Mathematical Society of Japan, 1996, 197-225. Zbl0864.05089MR98g:57012
  19. [19] F. JAEGER, New constructions of models for link invariants, Pacific J. Math., 176, n° 1 (1996). Zbl0878.57007MR98a:57010
  20. [20] W.B.R. LICKORISH, K.C. MILLETT, A polynomial invariant for oriented links, Topology, 26 (1987), 107-141. Zbl0608.57009MR88b:57012
  21. [21] V.F.R. JONES, On knot invariants related to some statistical mechanics models, Pacific J. Math., 137, n° 2 (1989), 311-334. Zbl0695.46029MR89m:57005
  22. [22] L.H. KAUFFMAN, State Models and the Jones Polynomial, Topology, 26 (1987), 395-407. Zbl0622.57004MR88f:57006
  23. [23] L.H. KAUFFMAN, Statistical Mechanics and the Jones Polynomial, Contemp. Math. Pub., Am. Math. Soc., 78 (1988), 263-297. Zbl0664.57002MR89j:57002
  24. [24] L.H. KAUFFMAN, An invariant of regular isotopy, Trans. Am. Math. Soc., 318, n° 2 (1990), 417-471. Zbl0763.57004MR90g:57007
  25. [25] L.H. KAUFFMAN, State models for link polynomials, Enseignement Math., 36 (1990), 1-37. Zbl0711.57003MR91k:57008
  26. [26] L.H. KAUFFMAN, A Tutte polynomial for signed graphs, Discrete Appl. Math., 25 (1989), 105-127. Zbl0698.05026MR91c:05082
  27. [27] L.H. KAUFFMAN, Knots and Physics, World Scientific Publishers, 1991 ; second ed., 1993 (723 pages). Zbl0733.57004
  28. [28] J. GOLDMAN, L.H. KAUFFMAN, Knots tangles and electrical networks, Advances Applied Math., 14 (1993), 267-306. Zbl0806.57002MR94m:57013
  29. [29] P. DE LA HARPE, Spin models for link polynomials, strongly regular graphs and Jaeger's Higman-Sims model, Pacific J. Math., 162, n° 1 (1994), 57-96. Zbl0795.57002MR94m:57014
  30. [30] Eiichi BANNAI, Etsuko BANNAI, Association schemes and spin models (a survey), Lecture Notes — Pure Math. Symposium, Postech, Pohang, Korea, 1993, 16 pages. Zbl0797.05082
  31. [31] Eiichi BANNAI, Etsuko BANNAI, Generalized spin models (four weight spin models), Pacific J. Math., 170, n° 1 (1995), 1-16. Zbl0848.05072MR97f:57005
  32. [32] K. NOMURA, An algebra associated with a spin model, J. Algebraic Combinatorics, 6 (1997), 53-58. Zbl0865.05077MR98g:05158
  33. [33] M. AIGNER, J.J. SEIDEL, Knoten, spin modelle und graphen, Jber. d. Dr. Math.-Verein., 97 (1995), 75-96. Zbl0859.57004MR96h:57004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.