The Milgram non-operad
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 5, page 1427-1438
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topBrinkmeier, Michael. "The Milgram non-operad." Annales de l'institut Fourier 49.5 (1999): 1427-1438. <http://eudml.org/doc/75388>.
@article{Brinkmeier1999,
	abstract = {C. Berger claimed to have constructed an $E_n$-operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.},
	author = {Brinkmeier, Michael},
	journal = {Annales de l'institut Fourier},
	keywords = {-operad; permutohedron; free -fold loop spaces},
	language = {eng},
	number = {5},
	pages = {1427-1438},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {The Milgram non-operad},
	url = {http://eudml.org/doc/75388},
	volume = {49},
	year = {1999},
}
TY  - JOUR
AU  - Brinkmeier, Michael
TI  - The Milgram non-operad
JO  - Annales de l'institut Fourier
PY  - 1999
PB  - Association des Annales de l'Institut Fourier
VL  - 49
IS  - 5
SP  - 1427
EP  - 1438
AB  - C. Berger claimed to have constructed an $E_n$-operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.
LA  - eng
KW  - -operad; permutohedron; free -fold loop spaces
UR  - http://eudml.org/doc/75388
ER  - 
References
top- [1] C. BALTEANU, Z. FIEDOROWICZ, R. SCHWÄNZL, R. VOGT, Iterated monoidal categories, preprint 98-035, Universität Bielefeld, 1998.
 - [2] H.-J. BAUES, Geometry of loop spaces and the cobar-construction, Mem. Amer. Math. Soc., 230 (1980). Zbl0473.55009MR81m:55010
 - [3] C. BERGER, Opérades cellulaires et espaces de lacets itérés, Ann. Inst. Fourier, 46 (1996), 1125-1157. Zbl0853.55007MR98c:55011
 - [4] C. BERGER, Combinatorial models for real configuration spaces and en-operads, Cont. Math., 202 (1997), 37-52. Zbl0860.18001MR98j:18014
 - [5] J.M. BOARDMAN, R.M. VOGT, Homotopy-everything h-spaces, Bull. Amer. Math. Soc., 74 (1968), 1117-1122. Zbl0165.26204MR38 #5215
 - [6] J.M. BOARDMAN, R.M. VOGT, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347 (Springer, Berlin), 1973. Zbl0285.55012MR54 #8623a
 - [7] Y. HEMMI, Higher homotopy commutativity of H-spaces and the mod p torus theorem, Pac. J. Math., 149 (1991), 95-111. Zbl0691.55007MR92a:55010
 - [8] J.P. MAY, The geometry of iterated loop spaces, Lecture Notes in Math. 271 (Springer, Berlin), 1972. Zbl0244.55009MR54 #8623b
 - [9] C.A. MCGIBBON, Higher forms of homotopy commutativity and finite loop spaces, Math. Zeitschrift, 201 (1989), 363-374. Zbl0682.55006MR90f:55019
 - [10] R.J. MILGRAM, Iterated loop spaces, Ann. of Math., 84 (1966), 386-403. Zbl0145.19901MR34 #6767
 - [11] J.D. STASHEFF, Homotopy associativity of h-spaces, I, Trans. Amer. Math. Soc., 108 (1963), 275-292. Zbl0114.39402MR28 #1623
 - [12] F.D. WILLIAMS, Higher homotopy-commutativity, Trans. Amer. Math. Soc., 139 (1969), 191-206. Zbl0185.27103MR39 #2163
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.