The Milgram non-operad

Michael Brinkmeier

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 5, page 1427-1438
  • ISSN: 0373-0956

Abstract

top
C. Berger claimed to have constructed an E n -operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.

How to cite

top

Brinkmeier, Michael. "The Milgram non-operad." Annales de l'institut Fourier 49.5 (1999): 1427-1438. <http://eudml.org/doc/75388>.

@article{Brinkmeier1999,
abstract = {C. Berger claimed to have constructed an $E_n$-operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.},
author = {Brinkmeier, Michael},
journal = {Annales de l'institut Fourier},
keywords = {-operad; permutohedron; free -fold loop spaces},
language = {eng},
number = {5},
pages = {1427-1438},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Milgram non-operad},
url = {http://eudml.org/doc/75388},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Brinkmeier, Michael
TI - The Milgram non-operad
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1427
EP - 1438
AB - C. Berger claimed to have constructed an $E_n$-operad-structure on the permutohedras, whose associated monad is exactly the Milgram model for the free loop spaces. In this paper I will show that this statement is not correct.
LA - eng
KW - -operad; permutohedron; free -fold loop spaces
UR - http://eudml.org/doc/75388
ER -

References

top
  1. [1] C. BALTEANU, Z. FIEDOROWICZ, R. SCHWÄNZL, R. VOGT, Iterated monoidal categories, preprint 98-035, Universität Bielefeld, 1998. 
  2. [2] H.-J. BAUES, Geometry of loop spaces and the cobar-construction, Mem. Amer. Math. Soc., 230 (1980). Zbl0473.55009MR81m:55010
  3. [3] C. BERGER, Opérades cellulaires et espaces de lacets itérés, Ann. Inst. Fourier, 46 (1996), 1125-1157. Zbl0853.55007MR98c:55011
  4. [4] C. BERGER, Combinatorial models for real configuration spaces and en-operads, Cont. Math., 202 (1997), 37-52. Zbl0860.18001MR98j:18014
  5. [5] J.M. BOARDMAN, R.M. VOGT, Homotopy-everything h-spaces, Bull. Amer. Math. Soc., 74 (1968), 1117-1122. Zbl0165.26204MR38 #5215
  6. [6] J.M. BOARDMAN, R.M. VOGT, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347 (Springer, Berlin), 1973. Zbl0285.55012MR54 #8623a
  7. [7] Y. HEMMI, Higher homotopy commutativity of H-spaces and the mod p torus theorem, Pac. J. Math., 149 (1991), 95-111. Zbl0691.55007MR92a:55010
  8. [8] J.P. MAY, The geometry of iterated loop spaces, Lecture Notes in Math. 271 (Springer, Berlin), 1972. Zbl0244.55009MR54 #8623b
  9. [9] C.A. MCGIBBON, Higher forms of homotopy commutativity and finite loop spaces, Math. Zeitschrift, 201 (1989), 363-374. Zbl0682.55006MR90f:55019
  10. [10] R.J. MILGRAM, Iterated loop spaces, Ann. of Math., 84 (1966), 386-403. Zbl0145.19901MR34 #6767
  11. [11] J.D. STASHEFF, Homotopy associativity of h-spaces, I, Trans. Amer. Math. Soc., 108 (1963), 275-292. Zbl0114.39402MR28 #1623
  12. [12] F.D. WILLIAMS, Higher homotopy-commutativity, Trans. Amer. Math. Soc., 139 (1969), 191-206. Zbl0185.27103MR39 #2163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.