A note on commuting graphs for symmetric groups.
Let S be a set of transpositions generating the symmetric group Sn (n ≥ 5). The transposition graph of S is defined to be the graph with vertex set {1, . . . , n}, and with vertices i and j being adjacent in T(S) whenever (i, j) ∈ S. In the present note, it is proved that two transposition graphs are isomorphic if and only if the corresponding two Cayley graphs are isomorphic. It is also proved that the transposition graph T(S) is edge-transitive if and only if the Cayley graph Cay(Sn, S) is edge-transitive....
Nous démontrons que dans la catégorie des foncteurs entre espaces vectoriels sur , le produit tensoriel entre le second foncteur injectif standard non constant et un foncteur puissance extérieure est artinien. Seul était antérieurement connu le caractère artinien de cet injectif ; notre résultat constitue une étape pour l’étude du troisième foncteur injectif standard non constant de .Nous utilisons le foncteur de division par le foncteur identité et des considérations issues de la théorie...
Let denote the symmetric group with letters, and the maximal order of an element of . If the standard factorization of into primes is , we define to be ; one century ago, E. Landau proved that and that, when goes to infinity, .There exists a basic algorithm to compute for ; its running time is and the needed memory is ; it allows computing up to, say, one million. We describe an algorithm to calculate for up to . The main idea is to use the so-called -superchampion...
Deux codages sont utilisés sur l’ensemble des permutations ou ordres totaux sur un ensemble fini à éléments et à chacun de ces codages est associé un produit direct d’ordres totaux. On démontre que le diagramme du treillis permutoèdre (ou ordre de Bruhat faible sur le groupe symétrique ) est intersection des diagrammes des deux produits directs de ordres totaux à éléments.