Kähler manifolds with small eigenvalues of the Dirac operator and a conjecture of Lichnerowicz

Andrei Moroianu

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 5, page 1637-1659
  • ISSN: 0373-0956

Abstract

top
We describe all compact spin Kähler manifolds of even complex dimension and positive scalar curvature with least possible first eigenvalue of the Dirac operator.

How to cite

top

Moroianu, Andrei. "Kähler manifolds with small eigenvalues of the Dirac operator and a conjecture of Lichnerowicz." Annales de l'institut Fourier 49.5 (1999): 1637-1659. <http://eudml.org/doc/75396>.

@article{Moroianu1999,
abstract = {We describe all compact spin Kähler manifolds of even complex dimension and positive scalar curvature with least possible first eigenvalue of the Dirac operator.},
author = {Moroianu, Andrei},
journal = {Annales de l'institut Fourier},
keywords = {spin Kähler manifold; Kirchberg's inequality; Dirac operator},
language = {eng},
number = {5},
pages = {1637-1659},
publisher = {Association des Annales de l'Institut Fourier},
title = {Kähler manifolds with small eigenvalues of the Dirac operator and a conjecture of Lichnerowicz},
url = {http://eudml.org/doc/75396},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Moroianu, Andrei
TI - Kähler manifolds with small eigenvalues of the Dirac operator and a conjecture of Lichnerowicz
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1637
EP - 1659
AB - We describe all compact spin Kähler manifolds of even complex dimension and positive scalar curvature with least possible first eigenvalue of the Dirac operator.
LA - eng
KW - spin Kähler manifold; Kirchberg's inequality; Dirac operator
UR - http://eudml.org/doc/75396
ER -

References

top
  1. [1] C. BÄR, Real Killing spinors and holonomy, Commun. Math. Phys., 154 (1993), 509-521. Zbl0778.53037MR94i:53042
  2. [2] H. BAUM, Th. FRIEDRICH, R. GRUNEWALD, I. KATH, Twistors and Killing Spinors on Riemannian Manifolds, Teubner-Verlag Stuttgart/Leipzig (1991). Zbl0734.53003
  3. [3] Th. FRIEDRICH, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr., 97 (1980), 117-146. Zbl0462.53027
  4. [4] Th. FRIEDRICH, A remark on the first eigenvalue of the Dirac operator on 4-dimensional manifolds, Math. Nachr., 102 (1981), 53-56. Zbl0481.53039MR83d:58069
  5. [5] Th. FRIEDRICH, The Classification of 4-dimensional Kähler Manifolds with Small Eigenvalue of the Dirac Operator, Math. Ann., 295 (1993), 565-574. Zbl0798.53065
  6. [6] Th. FRIEDRICH, R. GRUNEWALD, On the first eigenvalue of the Dirac operator on 6-dimensional manifolds, Ann. Global Anal. Geom., 3 (1985), 265-273. Zbl0577.58034MR87a:58156
  7. [7] Th. FRIEDRICH, I. KATH, Einstein manifolds of dimension five with small eigenvalues of the Dirac operator, J. Differential Geom., 29 (1989), 263-279. Zbl0633.53069MR90e:58158
  8. [8] Th. FRIEDRICH, I. KATH, Compact Seven-dimensional Manifolds with Killing Spinors, Commun. Math. Phys., 133 (1990), 543-561. Zbl0722.53038
  9. [9] S. GALLOT, Équations différentielles caractéristiques de la sphère, Ann. Sci. Ec. Norm. Sup. Paris, 12 (1979), 235-267. Zbl0412.58009MR80h:58051
  10. [10] P. GAUDUCHON, L'opérateur de Penrose kählérien et les inégalités de Kirchberg, preprint (1993). 
  11. [11] O. HIJAZI, Opérateurs de Dirac sur les variétés riemanniennes : Minoration des valeurs propres, Thèse de 3ème Cycle, École Polytechnique (1984). 
  12. [12] O. HIJAZI, Caractérisation de la sphère par les premières valeurs propres de l'opérateur de Dirac en dimensions 3, 4, 7 et 8, C. R. Acad. Sci. Paris, 307, Série I (1986), 417-419. Zbl0606.53024MR88b:58142
  13. [13] O. HIJAZI, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys., 104 (1986), 151-162. Zbl0593.58040MR87j:58096
  14. [14] O. HIJAZI, Eigenvalues of the Dirac operator on compact Kähler manifolds, Commun. Math. Phys., 160 (1994), 563-579. Zbl0794.53042MR95b:58156
  15. [15] N. HITCHIN, Harmonic Spinors, Adv. in Math., 14 (1974), 1-55. Zbl0284.58016MR50 #11332
  16. [16] K.-D. KIRCHBERG, An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Global Anal. Geom., 3 (1986), 291-325. Zbl0629.53058MR89b:58221
  17. [17] K.-D. KIRCHBERG, The first Eigenvalue of the Dirac Operator on Kähler Manifolds, J. Geom. Phys., 7 (1990), 449-468. Zbl0734.53050MR92h:58199
  18. [18] S. KOBAYASHI, On compact Kähler Manifolds with Positive Definite Ricci Tensor, Ann. of Math., 74 (1961), 570-574. Zbl0107.16002MR24 #A2922
  19. [19] A. LICHNEROWICZ, Spineurs harmoniques, C. R. Acad. Sci. Paris, 257 (1963), 7-9. Zbl0136.18401MR27 #6218
  20. [20] A. LICHNEROWICZ, La première valeur propre de l'opérateur de Dirac pour une variété kählérienne et son cas limite, C. R. Acad. Sci. Paris, 311, Série I (1990), 717-722. Zbl0713.53040MR92a:58147
  21. [21] A. MOROIANU, La première valeur propre de l'opérateur de Dirac sur les variétés kählériennes compactes, Commun. Math. Phys., 169 (1995), 373-384. Zbl0832.53054MR96g:58198
  22. [22] A. MOROIANU, On Kirchberg inequality for compact Kähler manifolds of even complex dimension, Ann. Global Anal. Geom., 15 (1997), 235-242. Zbl0890.53058MR98d:58192
  23. [23] A. MOROIANU, Parallel and Killing Spinors on Spinc Manifolds, Commun. Math. Phys., 187 (1997), 417-428. Zbl0888.53035MR98i:58245
  24. [24] A. MOROIANU, Spinc Manifolds and Complex Contact Structures, Commun. Math. Phys., 193 (1998), 661-673. Zbl0908.53024MR99c:53048
  25. [25] B. O'NEILL, The fundamental equations of a submersion, Michigan Math J., 13 (1966), 459-469. Zbl0145.18602MR34 #751

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.