Kähler manifolds with small eigenvalues of the Dirac operator and a conjecture of Lichnerowicz
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 5, page 1637-1659
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMoroianu, Andrei. "Kähler manifolds with small eigenvalues of the Dirac operator and a conjecture of Lichnerowicz." Annales de l'institut Fourier 49.5 (1999): 1637-1659. <http://eudml.org/doc/75396>.
@article{Moroianu1999,
abstract = {We describe all compact spin Kähler manifolds of even complex dimension and positive scalar curvature with least possible first eigenvalue of the Dirac operator.},
author = {Moroianu, Andrei},
journal = {Annales de l'institut Fourier},
keywords = {spin Kähler manifold; Kirchberg's inequality; Dirac operator},
language = {eng},
number = {5},
pages = {1637-1659},
publisher = {Association des Annales de l'Institut Fourier},
title = {Kähler manifolds with small eigenvalues of the Dirac operator and a conjecture of Lichnerowicz},
url = {http://eudml.org/doc/75396},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Moroianu, Andrei
TI - Kähler manifolds with small eigenvalues of the Dirac operator and a conjecture of Lichnerowicz
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1637
EP - 1659
AB - We describe all compact spin Kähler manifolds of even complex dimension and positive scalar curvature with least possible first eigenvalue of the Dirac operator.
LA - eng
KW - spin Kähler manifold; Kirchberg's inequality; Dirac operator
UR - http://eudml.org/doc/75396
ER -
References
top- [1] C. BÄR, Real Killing spinors and holonomy, Commun. Math. Phys., 154 (1993), 509-521. Zbl0778.53037MR94i:53042
- [2] H. BAUM, Th. FRIEDRICH, R. GRUNEWALD, I. KATH, Twistors and Killing Spinors on Riemannian Manifolds, Teubner-Verlag Stuttgart/Leipzig (1991). Zbl0734.53003
- [3] Th. FRIEDRICH, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr., 97 (1980), 117-146. Zbl0462.53027
- [4] Th. FRIEDRICH, A remark on the first eigenvalue of the Dirac operator on 4-dimensional manifolds, Math. Nachr., 102 (1981), 53-56. Zbl0481.53039MR83d:58069
- [5] Th. FRIEDRICH, The Classification of 4-dimensional Kähler Manifolds with Small Eigenvalue of the Dirac Operator, Math. Ann., 295 (1993), 565-574. Zbl0798.53065
- [6] Th. FRIEDRICH, R. GRUNEWALD, On the first eigenvalue of the Dirac operator on 6-dimensional manifolds, Ann. Global Anal. Geom., 3 (1985), 265-273. Zbl0577.58034MR87a:58156
- [7] Th. FRIEDRICH, I. KATH, Einstein manifolds of dimension five with small eigenvalues of the Dirac operator, J. Differential Geom., 29 (1989), 263-279. Zbl0633.53069MR90e:58158
- [8] Th. FRIEDRICH, I. KATH, Compact Seven-dimensional Manifolds with Killing Spinors, Commun. Math. Phys., 133 (1990), 543-561. Zbl0722.53038
- [9] S. GALLOT, Équations différentielles caractéristiques de la sphère, Ann. Sci. Ec. Norm. Sup. Paris, 12 (1979), 235-267. Zbl0412.58009MR80h:58051
- [10] P. GAUDUCHON, L'opérateur de Penrose kählérien et les inégalités de Kirchberg, preprint (1993).
- [11] O. HIJAZI, Opérateurs de Dirac sur les variétés riemanniennes : Minoration des valeurs propres, Thèse de 3ème Cycle, École Polytechnique (1984).
- [12] O. HIJAZI, Caractérisation de la sphère par les premières valeurs propres de l'opérateur de Dirac en dimensions 3, 4, 7 et 8, C. R. Acad. Sci. Paris, 307, Série I (1986), 417-419. Zbl0606.53024MR88b:58142
- [13] O. HIJAZI, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys., 104 (1986), 151-162. Zbl0593.58040MR87j:58096
- [14] O. HIJAZI, Eigenvalues of the Dirac operator on compact Kähler manifolds, Commun. Math. Phys., 160 (1994), 563-579. Zbl0794.53042MR95b:58156
- [15] N. HITCHIN, Harmonic Spinors, Adv. in Math., 14 (1974), 1-55. Zbl0284.58016MR50 #11332
- [16] K.-D. KIRCHBERG, An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Global Anal. Geom., 3 (1986), 291-325. Zbl0629.53058MR89b:58221
- [17] K.-D. KIRCHBERG, The first Eigenvalue of the Dirac Operator on Kähler Manifolds, J. Geom. Phys., 7 (1990), 449-468. Zbl0734.53050MR92h:58199
- [18] S. KOBAYASHI, On compact Kähler Manifolds with Positive Definite Ricci Tensor, Ann. of Math., 74 (1961), 570-574. Zbl0107.16002MR24 #A2922
- [19] A. LICHNEROWICZ, Spineurs harmoniques, C. R. Acad. Sci. Paris, 257 (1963), 7-9. Zbl0136.18401MR27 #6218
- [20] A. LICHNEROWICZ, La première valeur propre de l'opérateur de Dirac pour une variété kählérienne et son cas limite, C. R. Acad. Sci. Paris, 311, Série I (1990), 717-722. Zbl0713.53040MR92a:58147
- [21] A. MOROIANU, La première valeur propre de l'opérateur de Dirac sur les variétés kählériennes compactes, Commun. Math. Phys., 169 (1995), 373-384. Zbl0832.53054MR96g:58198
- [22] A. MOROIANU, On Kirchberg inequality for compact Kähler manifolds of even complex dimension, Ann. Global Anal. Geom., 15 (1997), 235-242. Zbl0890.53058MR98d:58192
- [23] A. MOROIANU, Parallel and Killing Spinors on Spinc Manifolds, Commun. Math. Phys., 187 (1997), 417-428. Zbl0888.53035MR98i:58245
- [24] A. MOROIANU, Spinc Manifolds and Complex Contact Structures, Commun. Math. Phys., 193 (1998), 661-673. Zbl0908.53024MR99c:53048
- [25] B. O'NEILL, The fundamental equations of a submersion, Michigan Math J., 13 (1966), 459-469. Zbl0145.18602MR34 #751
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.