Algebraic equivalence of real algebraic cycles

Miguel Abánades; Wojciech Kucharz

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 6, page 1797-1804
  • ISSN: 0373-0956

Abstract

top
Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.

How to cite

top

Abánades, Miguel, and Kucharz, Wojciech. "Algebraic equivalence of real algebraic cycles." Annales de l'institut Fourier 49.6 (1999): 1797-1804. <http://eudml.org/doc/75402>.

@article{Abánades1999,
abstract = {Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.},
author = {Abánades, Miguel, Kucharz, Wojciech},
journal = {Annales de l'institut Fourier},
keywords = {real algebraic variety; algebraic cycles algebraically equivalent to zero; algebraic cohomology},
language = {eng},
number = {6},
pages = {1797-1804},
publisher = {Association des Annales de l'Institut Fourier},
title = {Algebraic equivalence of real algebraic cycles},
url = {http://eudml.org/doc/75402},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Abánades, Miguel
AU - Kucharz, Wojciech
TI - Algebraic equivalence of real algebraic cycles
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1797
EP - 1804
AB - Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.
LA - eng
KW - real algebraic variety; algebraic cycles algebraically equivalent to zero; algebraic cohomology
UR - http://eudml.org/doc/75402
ER -

References

top
  1. [1] S. AKBULUT and H. KING, Topology of Real Algebraic Sets, Mathematical Sciences Research Institute Publications, Springer, 1992. Zbl0808.14045MR94m:57001
  2. [2] S. AKBULUT and H. KING, Transcendental submanifolds of Rn, Comm. Math. Helv., 68 (1993), 308-318. Zbl0806.57017MR94j:57032
  3. [3] E. BIERSTONE and P. MILMAN, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128 (1997), 207-302. Zbl0896.14006MR98e:14010
  4. [4] J. BOCHNAK and W. KUCHARZ, Algebraic models of smooth manifolds, Invent. Math., 97 (1989), 585-611. Zbl0687.14023MR91b:14076
  5. [5] A. BOREL et A. HAEFLIGER, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513. Zbl0102.38502MR26 #6990
  6. [6] P.E. CONNER, Differentiable Periodic Maps, Lecture Notes in Math., Vol. 738, Berlin-Heidelberg-New York, Springer, 1979. Zbl0417.57019MR81f:57018
  7. [7] W. FULTON, Intersection Theory, Ergebnisse der Math., Vol. 2, Berlin-Heidelberg-New York, Springer, 1984. Zbl0541.14005MR85k:14004
  8. [8] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-326. Zbl0122.38603MR33 #7333
  9. [9] S.T. HU, Homotopy Theory, New York, Academic Press, 1959. Zbl0088.38803MR21 #5186
  10. [10] W. KUCHARZ, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr., 180 (1996), 135-140. Zbl0877.14003MR97e:14009
  11. [11] J. MILNOR and J. STASHEFF, Characteristic Classes, Ann. of Math. Studies, Vol. 76, Princeton Univ. Press, 1974. Zbl0298.57008MR55 #13428
  12. [12] R. THOM, Quelques propriétés globales de variétés différentiables, Comm. Math. Helv., 28 (1954), 17-86. Zbl0057.15502MR15,890a
  13. [13] A. TOGNOLI, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 167-185.. Zbl0263.57011MR53 #434

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.