Algebraic equivalence of real algebraic cycles
Miguel Abánades; Wojciech Kucharz
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 6, page 1797-1804
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAbánades, Miguel, and Kucharz, Wojciech. "Algebraic equivalence of real algebraic cycles." Annales de l'institut Fourier 49.6 (1999): 1797-1804. <http://eudml.org/doc/75402>.
@article{Abánades1999,
abstract = {Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.},
author = {Abánades, Miguel, Kucharz, Wojciech},
journal = {Annales de l'institut Fourier},
keywords = {real algebraic variety; algebraic cycles algebraically equivalent to zero; algebraic cohomology},
language = {eng},
number = {6},
pages = {1797-1804},
publisher = {Association des Annales de l'Institut Fourier},
title = {Algebraic equivalence of real algebraic cycles},
url = {http://eudml.org/doc/75402},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Abánades, Miguel
AU - Kucharz, Wojciech
TI - Algebraic equivalence of real algebraic cycles
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 6
SP - 1797
EP - 1804
AB - Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.
LA - eng
KW - real algebraic variety; algebraic cycles algebraically equivalent to zero; algebraic cohomology
UR - http://eudml.org/doc/75402
ER -
References
top- [1] S. AKBULUT and H. KING, Topology of Real Algebraic Sets, Mathematical Sciences Research Institute Publications, Springer, 1992. Zbl0808.14045MR94m:57001
- [2] S. AKBULUT and H. KING, Transcendental submanifolds of Rn, Comm. Math. Helv., 68 (1993), 308-318. Zbl0806.57017MR94j:57032
- [3] E. BIERSTONE and P. MILMAN, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128 (1997), 207-302. Zbl0896.14006MR98e:14010
- [4] J. BOCHNAK and W. KUCHARZ, Algebraic models of smooth manifolds, Invent. Math., 97 (1989), 585-611. Zbl0687.14023MR91b:14076
- [5] A. BOREL et A. HAEFLIGER, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513. Zbl0102.38502MR26 #6990
- [6] P.E. CONNER, Differentiable Periodic Maps, Lecture Notes in Math., Vol. 738, Berlin-Heidelberg-New York, Springer, 1979. Zbl0417.57019MR81f:57018
- [7] W. FULTON, Intersection Theory, Ergebnisse der Math., Vol. 2, Berlin-Heidelberg-New York, Springer, 1984. Zbl0541.14005MR85k:14004
- [8] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-326. Zbl0122.38603MR33 #7333
- [9] S.T. HU, Homotopy Theory, New York, Academic Press, 1959. Zbl0088.38803MR21 #5186
- [10] W. KUCHARZ, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr., 180 (1996), 135-140. Zbl0877.14003MR97e:14009
- [11] J. MILNOR and J. STASHEFF, Characteristic Classes, Ann. of Math. Studies, Vol. 76, Princeton Univ. Press, 1974. Zbl0298.57008MR55 #13428
- [12] R. THOM, Quelques propriétés globales de variétés différentiables, Comm. Math. Helv., 28 (1954), 17-86. Zbl0057.15502MR15,890a
- [13] A. TOGNOLI, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 167-185.. Zbl0263.57011MR53 #434
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.