Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices
Eberhard Oeljeklaus; Christina Schmerling
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 1, page 197-210
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOeljeklaus, Eberhard, and Schmerling, Christina. "Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices." Annales de l'institut Fourier 50.1 (2000): 197-210. <http://eudml.org/doc/75412>.
@article{Oeljeklaus2000,
abstract = {Let $D$ be a bounded symmetric domain in $\{\Bbb C\}^\{2\}$ and $\Gamma \subset \{\rm Aut\}^\{0\}D$ an irreducible arithmetic lattice which operates freely on $D$. We prove that the cusp–compactification $\overline\{X\}$ of $X=D/\Gamma $ is hyperbolic.},
author = {Oeljeklaus, Eberhard, Schmerling, Christina},
journal = {Annales de l'institut Fourier},
keywords = {hyperbolicity; quotient surfaces},
language = {eng},
number = {1},
pages = {197-210},
publisher = {Association des Annales de l'Institut Fourier},
title = {Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices},
url = {http://eudml.org/doc/75412},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Oeljeklaus, Eberhard
AU - Schmerling, Christina
TI - Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 1
SP - 197
EP - 210
AB - Let $D$ be a bounded symmetric domain in ${\Bbb C}^{2}$ and $\Gamma \subset {\rm Aut}^{0}D$ an irreducible arithmetic lattice which operates freely on $D$. We prove that the cusp–compactification $\overline{X}$ of $X=D/\Gamma $ is hyperbolic.
LA - eng
KW - hyperbolicity; quotient surfaces
UR - http://eudml.org/doc/75412
ER -
References
top- [AMRT] A. ASH, D. MUMFORD, M. RAPOPORT, Y. TAISmooth compactification of locally symmetric varieties. Lie groups : History, Frontiers and application, vol. IV, Math. Sci. Press, 1975. Zbl0334.14007MR56 #15642
- [BB] W. BAILY, A. BORELCompactification of arithmetic quotients of bounded symmetric domains, Ann. of Math., 84 (1966), 422-528. Zbl0154.08602MR35 #6870
- [Bo] A. BORELIntroduction aux groupes arithmetiques, Hermann, 1969. Zbl0186.33202MR39 #5577
- [BPV] W. BARTH, C. PETERS, A. van de VENCompact complex surfaces, Erg. d. Mathematik, 3. Folge, Bd. 4, Springer (1984). Zbl0718.14023MR86c:32026
- [Br] R. BRODYCompact manifolds and hyperbolicity, Trans. AMS, 235 (1976), 213-219. Zbl0416.32013MR57 #10010
- [Fr1] E. FREITAGEine Bemerkung zur Theorie der Hilbertschen Modulmannigfaltigkeiten hoher Stufe, Math. Z., 171 (1980), 27-35. Zbl0445.10023MR82c:10033
- [Fr2] E. FREITAGHilbert modular forms, Springer, 1990. Zbl0702.11029MR91c:11025
- [GR] H. GRAUERT, H. RECKZIEGELHermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z., 89 (1965), 108-125. Zbl0135.12503MR33 #2827
- [He] J. HEMPERLYThe parabolic contribution to the number of linearly independent automorphic forms on a certain bounded domain, Amer. J. of Math., 94 (1972), 1078-1110. Zbl0259.32010MR53 #11110
- [Hi] F. HIRZEBRUCHHilbert modular surfaces, Enseign. Math., (1973), 183-281. Zbl0285.14007MR52 #13856
- [Ho] R.-P. HOLZAPFELBall and Surface Arithmetics, Aspects of mathematics, Vol. 29, Vieweg, 1998. Zbl0980.14026MR2000d:14044
- [Ko] R. KOBAYASHIEinstein-Kähler metrics on open algebraic surfaces of general type, Tohoku Math. J., 37 (1985), 43-77. Zbl0582.53046MR87a:53102
- [Mu] D. MUMFORDHirzebruch's proportionality theorem in the non-compact case, Inv. Math., 42 (1977), 239-272. Zbl0365.14012MR81a:32026
- [S] C. SCHMERLINGEine Hyperbolizitätsuntersuchung für reine arithmetische Quotientenflächen symmetrischer beschränkter Gebiete, Dissertation, Bremen, 1997.
- [ST] G. SCHUMACHER, K. TAKEGOSHIHyperbolicity and branched coverings, Math. Ann., 286 (1990), 537-548. Zbl0847.32029MR91b:32028
- [vdG] G. van der GEERHilbert modular surfaces, Erg. d. Math., 3, Folge, Vol. 16, Springer, 1988. Zbl0634.14022MR89c:11073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.