Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices

Eberhard Oeljeklaus; Christina Schmerling

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 1, page 197-210
  • ISSN: 0373-0956

Abstract

top
Let D be a bounded symmetric domain in 2 and Γ Aut 0 D an irreducible arithmetic lattice which operates freely on D . We prove that the cusp–compactification X of X = D / Γ is hyperbolic.

How to cite

top

Oeljeklaus, Eberhard, and Schmerling, Christina. "Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices." Annales de l'institut Fourier 50.1 (2000): 197-210. <http://eudml.org/doc/75412>.

@article{Oeljeklaus2000,
abstract = {Let $D$ be a bounded symmetric domain in $\{\Bbb C\}^\{2\}$ and $\Gamma \subset \{\rm Aut\}^\{0\}D$ an irreducible arithmetic lattice which operates freely on $D$. We prove that the cusp–compactification $\overline\{X\}$ of $X=D/\Gamma $ is hyperbolic.},
author = {Oeljeklaus, Eberhard, Schmerling, Christina},
journal = {Annales de l'institut Fourier},
keywords = {hyperbolicity; quotient surfaces},
language = {eng},
number = {1},
pages = {197-210},
publisher = {Association des Annales de l'Institut Fourier},
title = {Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices},
url = {http://eudml.org/doc/75412},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Oeljeklaus, Eberhard
AU - Schmerling, Christina
TI - Hyperbolicity properties of quotient surfaces by freely operating arithmetic lattices
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 1
SP - 197
EP - 210
AB - Let $D$ be a bounded symmetric domain in ${\Bbb C}^{2}$ and $\Gamma \subset {\rm Aut}^{0}D$ an irreducible arithmetic lattice which operates freely on $D$. We prove that the cusp–compactification $\overline{X}$ of $X=D/\Gamma $ is hyperbolic.
LA - eng
KW - hyperbolicity; quotient surfaces
UR - http://eudml.org/doc/75412
ER -

References

top
  1. [AMRT] A. ASH, D. MUMFORD, M. RAPOPORT, Y. TAISmooth compactification of locally symmetric varieties. Lie groups : History, Frontiers and application, vol. IV, Math. Sci. Press, 1975. Zbl0334.14007MR56 #15642
  2. [BB] W. BAILY, A. BORELCompactification of arithmetic quotients of bounded symmetric domains, Ann. of Math., 84 (1966), 422-528. Zbl0154.08602MR35 #6870
  3. [Bo] A. BORELIntroduction aux groupes arithmetiques, Hermann, 1969. Zbl0186.33202MR39 #5577
  4. [BPV] W. BARTH, C. PETERS, A. van de VENCompact complex surfaces, Erg. d. Mathematik, 3. Folge, Bd. 4, Springer (1984). Zbl0718.14023MR86c:32026
  5. [Br] R. BRODYCompact manifolds and hyperbolicity, Trans. AMS, 235 (1976), 213-219. Zbl0416.32013MR57 #10010
  6. [Fr1] E. FREITAGEine Bemerkung zur Theorie der Hilbertschen Modulmannigfaltigkeiten hoher Stufe, Math. Z., 171 (1980), 27-35. Zbl0445.10023MR82c:10033
  7. [Fr2] E. FREITAGHilbert modular forms, Springer, 1990. Zbl0702.11029MR91c:11025
  8. [GR] H. GRAUERT, H. RECKZIEGELHermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z., 89 (1965), 108-125. Zbl0135.12503MR33 #2827
  9. [He] J. HEMPERLYThe parabolic contribution to the number of linearly independent automorphic forms on a certain bounded domain, Amer. J. of Math., 94 (1972), 1078-1110. Zbl0259.32010MR53 #11110
  10. [Hi] F. HIRZEBRUCHHilbert modular surfaces, Enseign. Math., (1973), 183-281. Zbl0285.14007MR52 #13856
  11. [Ho] R.-P. HOLZAPFELBall and Surface Arithmetics, Aspects of mathematics, Vol. 29, Vieweg, 1998. Zbl0980.14026MR2000d:14044
  12. [Ko] R. KOBAYASHIEinstein-Kähler metrics on open algebraic surfaces of general type, Tohoku Math. J., 37 (1985), 43-77. Zbl0582.53046MR87a:53102
  13. [Mu] D. MUMFORDHirzebruch's proportionality theorem in the non-compact case, Inv. Math., 42 (1977), 239-272. Zbl0365.14012MR81a:32026
  14. [S] C. SCHMERLINGEine Hyperbolizitätsuntersuchung für reine arithmetische Quotientenflächen symmetrischer beschränkter Gebiete, Dissertation, Bremen, 1997. 
  15. [ST] G. SCHUMACHER, K. TAKEGOSHIHyperbolicity and branched coverings, Math. Ann., 286 (1990), 537-548. Zbl0847.32029MR91b:32028
  16. [vdG] G. van der GEERHilbert modular surfaces, Erg. d. Math., 3, Folge, Vol. 16, Springer, 1988. Zbl0634.14022MR89c:11073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.