Torsion des courbes elliptiques sur les corps cubiques

Pierre Parent

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 723-749
  • ISSN: 0373-0956

Abstract

top
We give the list (up to one element) of prime numbers which are the order of some torsion point of an elliptic curve over a number field of degree 3.

How to cite

top

Parent, Pierre. "Torsion des courbes elliptiques sur les corps cubiques." Annales de l'institut Fourier 50.3 (2000): 723-749. <http://eudml.org/doc/75435>.

@article{Parent2000,
abstract = {On donne la liste (à un élément près) des nombres premiers qui sont l’ordre d’un point de torsion d’une courbe elliptique sur un corps de nombres de degré trois.},
author = {Parent, Pierre},
journal = {Annales de l'institut Fourier},
keywords = {elliptic curves over number fields with small degree; torsion points; modular symbols; winding quotient; Birch Swinnerton-Dyer conjecture},
language = {fre},
number = {3},
pages = {723-749},
publisher = {Association des Annales de l'Institut Fourier},
title = {Torsion des courbes elliptiques sur les corps cubiques},
url = {http://eudml.org/doc/75435},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Parent, Pierre
TI - Torsion des courbes elliptiques sur les corps cubiques
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 723
EP - 749
AB - On donne la liste (à un élément près) des nombres premiers qui sont l’ordre d’un point de torsion d’une courbe elliptique sur un corps de nombres de degré trois.
LA - fre
KW - elliptic curves over number fields with small degree; torsion points; modular symbols; winding quotient; Birch Swinnerton-Dyer conjecture
UR - http://eudml.org/doc/75435
ER -

References

top
  1. [1] J.E. CREMONA, Modular symbols for Г1 (N) and elliptic curves with everywhere good reduction, Math. Proc. Camb. Phil. Soc., 111 (1992), 199-218. Zbl0752.11022MR93e:11065
  2. [2] P. DELIGNE, D. MUMFORD, On the Irreducibility of the Space of Curves of Given Genus, Publ. Math. IHES, 36 (1969), 75-110. Zbl0181.48803MR41 #6850
  3. [3] F. DIAMOND, J. IM, Modular forms and modular curves, Canadian Math. Soc. Conf. Proc., 17 (1995), 39-133. Zbl0853.11032MR97g:11044
  4. [4] V.G. DRINFELD, Two theorems on modular curves, Funktsional Anal. i Prilozhen, 7, n° 2 (1973), 82-84 (en russe) ; Functional Anal. Appl., 7, n° 2 (1973), 155-156 (en anglais). Zbl0285.14006MR47 #6705
  5. [5] B.H. GROSS, A tameness criterion for Galois representations associated to modular forms (mod (p)), Duke Math. J., 61 (1990), 445-517. Zbl0743.11030MR91i:11060
  6. [6] A. GROTHENDIECK, M. RAYNAUD, D.S. RIM, Séminaire de géométrie algébrique 7-I, Lecture Notes in Math., 288 (1972). Zbl0237.00013
  7. [7] S. KAMIENNY, Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math., 109 (1992), 221-229. Zbl0773.14016MR93h:11054
  8. [8] S. KAMIENNY, Some remarks on torsion in elliptic curves, Comm. in Algebra, 23 (6) (1995), 2167-2169. Zbl0832.14023MR96k:11068
  9. [9] S. KAMIENNY, B. MAZUR, Rational torsion of prime order in elliptic curves over number fields, Astérisque, 228 (1995), 81-100. Zbl0846.14012MR96c:11058
  10. [10] K. KATO, Euler systems, Iwasawa theory, and Selmer groups, à paraître. Zbl0993.11033
  11. [11] N.M. KATZ, B. MAZUR, Arithmetic moduli of elliptic curves, Annals of Math. Studies, Princeton University Press, 108 (1985). Zbl0576.14026MR86i:11024
  12. [12] M.A. KENKU, F. MOMOSE, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., 109 (1988), 125-149. Zbl0647.14020MR89c:11091
  13. [13] J.-C. LARIO, J. QUER, Table of some Hecke operators' eigenvalues, non publiée. 
  14. [14] Y. MANIN, Parabolic points and zeta function of modular curves, Math. USSR Izvestija, 6 (1972), 19-64. Zbl0248.14010MR47 #3396
  15. [15] B. MAZUR, Modular curves and the Eisenstein ideal, Pub. Math. I.H.E.S., 47 (1977), 33-186. Zbl0394.14008MR80c:14015
  16. [16] B. MAZUR, Rational Isogenies of Prime Degree, Invent. Math., 44 (1978), 129-162. Zbl0386.14009MR80h:14022
  17. [17] L. MEREL, Opérateurs de Hecke pour Г0(N) et fractions continues, Annales Institut Fourier, 41-1 (1991), 519-537. Zbl0727.11020MR92k:11047
  18. [18] L. MEREL, Universal Fourier expansions of modular forms, in On Artin's conjecture for odd 2-dimensional representations, Lecture Notes Math., 1585, Springer-Verlag (1994), 59-94. Zbl0844.11033MR96h:11032
  19. [19] L. MEREL, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., 124 (1996), 437-449. Zbl0936.11037MR96i:11057
  20. [20] F. MOMOSE, p-Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., 96 (1984), 139-165. Zbl0578.14021MR86m:11039
  21. [21] J. OESTERLÉ, Torsion des courbes elliptiques sur les corps de nombres, non publié. Zbl0737.14004
  22. [22] P. PARENT, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. reine ang. Math., 506 (1999), 85-116. Zbl0919.11040MR99k:11080
  23. [23] A. PETHÖ, TH. WEIS, H. ZIMMER, Torsion of elliptic curves with integral j-invariant over general cubic number fields, Internat. J. Alg. and Comp., 7, 3 (1997), 353-413. Zbl0868.11030MR98e:11069
  24. [24] M. RAYNAUD, Schémas en groupes de type (p, ..., p), Bull. Soc. Math. France, 102 (974), 241-280. Zbl0325.14020MR54 #7488
  25. [25] K. RUBIN, Euler systems and modular elliptic curves, in Galois representations in arithmetic algebraic geometry (Durham 1996), London Math. Soc. Lecture Note Ser., 254 (1998), Cambridge University Press, Cambridge, 351-367. Zbl0952.11016MR2001a:11106
  26. [26] A. SCHOLL, An introduction to Kato's Euler systems, in Galois representations in arithmetic algebraic geometry (Durham 1996), London Math. Soc. Lecture Note Ser., 254 (1998), Cambridge University Press, Cambridge, 379-460. Zbl0952.11015MR2000g:11057
  27. [27] J.-P. SERRE, Lectures on the Mordell-Weil Theorem (third ed.), Aspects of Mathematics, Vieweg (1997). Zbl0863.14013
  28. [28] G. SHIMURA, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971. Zbl0221.10029
  29. [29] W. STEIN, disponible sur la toile en http://shimura.math.berkeley.edu/~was/Tables/index.html. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.