Sheaves associated to holomorphic first integrals
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 3, page 909-919
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topZamora, Alexis García. "Sheaves associated to holomorphic first integrals." Annales de l'institut Fourier 50.3 (2000): 909-919. <http://eudml.org/doc/75443>.
@article{Zamora2000,
abstract = {Let $\{\cal F\}: L \rightarrow TS$ be a foliation on a complex, smooth and irreducible projective surface $S$, assume $\{\cal F\}$ admits a holomorphic first integral $f:S \rightarrow \{\Bbb P\}^1$. If $h^0(S,\{\cal O\}_S(-n\{\cal K\}_S))>0$ for some $n\ge 1$ we prove the inequality: $(2n-1)(g-1) \le h^1(S, \{\cal L\}^\{\prime -1\}(-(n-1)K_S)) +h^0 (S, \{\cal L\}^\prime ) +1$. If $S$ is rational we prove that the direct image sheaves of the co-normal sheaf of $\{\cal F\}$ under $f$ are locally free; and give some information on the nature of their decomposition as direct sum of invertible sheaves.},
author = {Zamora, Alexis García},
journal = {Annales de l'institut Fourier},
keywords = {holomorphic foliations; first integrals},
language = {eng},
number = {3},
pages = {909-919},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sheaves associated to holomorphic first integrals},
url = {http://eudml.org/doc/75443},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Zamora, Alexis García
TI - Sheaves associated to holomorphic first integrals
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 909
EP - 919
AB - Let ${\cal F}: L \rightarrow TS$ be a foliation on a complex, smooth and irreducible projective surface $S$, assume ${\cal F}$ admits a holomorphic first integral $f:S \rightarrow {\Bbb P}^1$. If $h^0(S,{\cal O}_S(-n{\cal K}_S))>0$ for some $n\ge 1$ we prove the inequality: $(2n-1)(g-1) \le h^1(S, {\cal L}^{\prime -1}(-(n-1)K_S)) +h^0 (S, {\cal L}^\prime ) +1$. If $S$ is rational we prove that the direct image sheaves of the co-normal sheaf of ${\cal F}$ under $f$ are locally free; and give some information on the nature of their decomposition as direct sum of invertible sheaves.
LA - eng
KW - holomorphic foliations; first integrals
UR - http://eudml.org/doc/75443
ER -
References
top- [1] W. BARTH, C. PETERS, and A. VAN DE VEN, Compact Complex Surfaces, Springer Verlag, 1984. Zbl0718.14023MR86c:32026
- [2] M. BRUNELLA, Feuilletages holomorphes sur les surfaces complexes compactes, Ann. scient. Ec. Norm. Sup., 30 (1997), 569-594. Zbl0893.32019MR98i:32051
- [3] X. GOMEZ-MONT, and R. VILA, On Meromorphic Integrals of Holomorphic Foliations in Surfaces, Unpublished.
- [4] P. GRIFFITHS, and J. HARRIS, Principles of Algebraic Geometry, John Wiley & Sons, 1978. Zbl0408.14001MR80b:14001
- [5] G. KEMPF, Algebraic Varieties, Cambridge University Press, 1993. Zbl0780.14001MR94k:14001
- [6] D. MUMFORD, Abelian Varieties, Oxford University Press, 1970. Zbl0223.14022MR44 #219
- [7] H. POINCARÉ, Sur l'intégration algébrique des équations différentielles du primer ordre, Rendiconti del Circolo Matematico di Palermo, 5 (1891), 161-191. JFM23.0319.01
- [8] A. SEIDENNBERG, Reduction of Singularities of the Differential Equation Ady - Bdx, Am. Journal of Math., (1968), 248-269. Zbl0159.33303
- [9] A.G. ZAMORA, Foliations on Algebraic Surfaces having a Rational First Integral, Public. Mat de la Universitá Aut. de Barcelona, 41 (1997), 357-373. Zbl0910.32039MR98m:32048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.