Sheaves associated to holomorphic first integrals

Alexis García Zamora

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 909-919
  • ISSN: 0373-0956

Abstract

top
Let : L T S be a foliation on a complex, smooth and irreducible projective surface S , assume admits a holomorphic first integral f : S 1 . If h 0 ( S , 𝒪 S ( - n 𝒦 S ) ) > 0 for some n 1 we prove the inequality: ( 2 n - 1 ) ( g - 1 ) h 1 ( S , ' - 1 ( - ( n - 1 ) K S ) ) + h 0 ( S , ' ) + 1 . If S is rational we prove that the direct image sheaves of the co-normal sheaf of under f are locally free; and give some information on the nature of their decomposition as direct sum of invertible sheaves.

How to cite

top

Zamora, Alexis García. "Sheaves associated to holomorphic first integrals." Annales de l'institut Fourier 50.3 (2000): 909-919. <http://eudml.org/doc/75443>.

@article{Zamora2000,
abstract = {Let $\{\cal F\}: L \rightarrow TS$ be a foliation on a complex, smooth and irreducible projective surface $S$, assume $\{\cal F\}$ admits a holomorphic first integral $f:S \rightarrow \{\Bbb P\}^1$. If $h^0(S,\{\cal O\}_S(-n\{\cal K\}_S))&gt;0$ for some $n\ge 1$ we prove the inequality: $(2n-1)(g-1) \le h^1(S, \{\cal L\}^\{\prime -1\}(-(n-1)K_S)) +h^0 (S, \{\cal L\}^\prime ) +1$. If $S$ is rational we prove that the direct image sheaves of the co-normal sheaf of $\{\cal F\}$ under $f$ are locally free; and give some information on the nature of their decomposition as direct sum of invertible sheaves.},
author = {Zamora, Alexis García},
journal = {Annales de l'institut Fourier},
keywords = {holomorphic foliations; first integrals},
language = {eng},
number = {3},
pages = {909-919},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sheaves associated to holomorphic first integrals},
url = {http://eudml.org/doc/75443},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Zamora, Alexis García
TI - Sheaves associated to holomorphic first integrals
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 909
EP - 919
AB - Let ${\cal F}: L \rightarrow TS$ be a foliation on a complex, smooth and irreducible projective surface $S$, assume ${\cal F}$ admits a holomorphic first integral $f:S \rightarrow {\Bbb P}^1$. If $h^0(S,{\cal O}_S(-n{\cal K}_S))&gt;0$ for some $n\ge 1$ we prove the inequality: $(2n-1)(g-1) \le h^1(S, {\cal L}^{\prime -1}(-(n-1)K_S)) +h^0 (S, {\cal L}^\prime ) +1$. If $S$ is rational we prove that the direct image sheaves of the co-normal sheaf of ${\cal F}$ under $f$ are locally free; and give some information on the nature of their decomposition as direct sum of invertible sheaves.
LA - eng
KW - holomorphic foliations; first integrals
UR - http://eudml.org/doc/75443
ER -

References

top
  1. [1] W. BARTH, C. PETERS, and A. VAN DE VEN, Compact Complex Surfaces, Springer Verlag, 1984. Zbl0718.14023MR86c:32026
  2. [2] M. BRUNELLA, Feuilletages holomorphes sur les surfaces complexes compactes, Ann. scient. Ec. Norm. Sup., 30 (1997), 569-594. Zbl0893.32019MR98i:32051
  3. [3] X. GOMEZ-MONT, and R. VILA, On Meromorphic Integrals of Holomorphic Foliations in Surfaces, Unpublished. 
  4. [4] P. GRIFFITHS, and J. HARRIS, Principles of Algebraic Geometry, John Wiley & Sons, 1978. Zbl0408.14001MR80b:14001
  5. [5] G. KEMPF, Algebraic Varieties, Cambridge University Press, 1993. Zbl0780.14001MR94k:14001
  6. [6] D. MUMFORD, Abelian Varieties, Oxford University Press, 1970. Zbl0223.14022MR44 #219
  7. [7] H. POINCARÉ, Sur l'intégration algébrique des équations différentielles du primer ordre, Rendiconti del Circolo Matematico di Palermo, 5 (1891), 161-191. JFM23.0319.01
  8. [8] A. SEIDENNBERG, Reduction of Singularities of the Differential Equation Ady - Bdx, Am. Journal of Math., (1968), 248-269. Zbl0159.33303
  9. [9] A.G. ZAMORA, Foliations on Algebraic Surfaces having a Rational First Integral, Public. Mat de la Universitá Aut. de Barcelona, 41 (1997), 357-373. Zbl0910.32039MR98m:32048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.