Relative Chow correspondences and the Griffiths group

Eric M. Friedlander

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 4, page 1073-1098
  • ISSN: 0373-0956

Abstract

top
A relativization of earlier constructions and Nori’s rational Lefschetz theorem enable interesting examples of the “topological filtration” on algebraic cycles.

How to cite

top

Friedlander, Eric M.. "Relative Chow correspondences and the Griffiths group." Annales de l'institut Fourier 50.4 (2000): 1073-1098. <http://eudml.org/doc/75449>.

@article{Friedlander2000,
abstract = {A relativization of earlier constructions and Nori’s rational Lefschetz theorem enable interesting examples of the “topological filtration” on algebraic cycles.},
author = {Friedlander, Eric M.},
journal = {Annales de l'institut Fourier},
keywords = {algebraic cycles; Griffiths group; topological filtration; Chow correspondences},
language = {eng},
number = {4},
pages = {1073-1098},
publisher = {Association des Annales de l'Institut Fourier},
title = {Relative Chow correspondences and the Griffiths group},
url = {http://eudml.org/doc/75449},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Friedlander, Eric M.
TI - Relative Chow correspondences and the Griffiths group
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 4
SP - 1073
EP - 1098
AB - A relativization of earlier constructions and Nori’s rational Lefschetz theorem enable interesting examples of the “topological filtration” on algebraic cycles.
LA - eng
KW - algebraic cycles; Griffiths group; topological filtration; Chow correspondences
UR - http://eudml.org/doc/75449
ER -

References

top
  1. [A] F. ALMGREN, Homotopy groups of the integral cycle groups, Topology, 1 (1962), 257-299. Zbl0118.18503MR26 #4355
  2. [AF] A. ANDREOTTI and T. FRANKEL, The Lefschetz theorem on hyperplane sections, Ann. of Math., (2), 69 (1959), 713-717. Zbl0115.38405MR31 #1685
  3. [B] D. BARLET, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finite, Fonctions de plusieurs variables, II, Lecture Notes in Math. 482, Springer-Verlag, (1975), 1-158. Zbl0331.32008MR53 #3347
  4. [De] P. DELIGNE, Théorie de Hodge III, Pub. I.H.E.S., 44 (1974), 5-77. Zbl0237.14003MR58 #16653b
  5. [D] A. DOLD, Lectures on Algebraic Topology, Springer-Verlag, 1972. Zbl0234.55001MR54 #3685
  6. [F1] E. FRIEDLANDER, Algebraic cycles, Chow varieties, and Lawson homology, Compositio Math., 77 (1991), 55-93. Zbl0754.14011MR92a:14005
  7. [F2] E. FRIEDLANDER, Filtrations on algebraic cycles and homology, Annales Ec. Norm. Sup. 4e série, t. 28 (1995), 317-343. Zbl0854.14006MR96i:14004
  8. [F3] E. FRIEDLANDER, Algebraic cocycles on quasi-projective varieties, Compositio Math., 110 (1998), 127-162. Zbl0915.14004MR2000a:14024
  9. [F4] E. FRIEDLANDER, Bloch-Ogus properties for topological cycle theory, Annales Ec. Norm. Sup., 33 (2000), 57-79. Zbl0982.14011MR2000m:14025
  10. [FG] E. FRIEDLANDER and O. GABBER, Cycle spaces and intersection theory, in Topological Methods in Modern Mathematics, (1993), 325-370. Zbl0830.14008MR94j:14010
  11. [FL1] E. FRIEDLANDER and H.B. LAWSON, A theory of algebraic cocycles, Annals of Math., 136 (1992), 361-428. Zbl0788.14014MR93g:14013
  12. [FL2] E. FRIEDLANDER and H.B. LAWSON, Moving algebraic cycles of bounded degree, Inventiones Math., 132 (1998), 92-119. Zbl0936.14005MR99k:14011
  13. [FL3] E. FRIEDLANDER and H.B. LAWSON, Graph mappings and Poincaré duality, preprint. Zbl1159.55001
  14. [FM1] E. FRIEDLANDER and B. MAZUR, Filtrations on the homology of algebraic varieties, Memoir, A.M.S., 529 (1994). Zbl0841.14019MR95a:14023
  15. [FM2] E. FRIEDLANDER and B. MAZUR, Correspondence homomorphisms for singular varieties, Ann. Inst. Fourier, Grenoble, 44-3 (1994), 703-727. Zbl0811.14007MR95j:14009
  16. [FW] E. FRIEDLANDER and M. WALKER, Function spaces and continuous algebraic pairings for varieties, to appear in Compositio Math. Zbl1049.14003
  17. [H] H. HIRONAKA, Triangulations of algebraic sets, Proc. of Symposia in Pure Math., 29 (1975), 165-185. Zbl0332.14001MR51 #10331
  18. [LiF] P. LIMA-FILHO, Completions and fibrations for topological monoids, Trans. A.M.S., 340 (1993), 127-147. Zbl0788.55013MR94a:55009
  19. [N] M. NORI, Algebraic cycles and Hodge theoretic connectivity, Inventiones Math., 111 (1993), 349-373. Zbl0822.14008MR94b:14007
  20. [Sp] E. SPANIER, Algebraic Topology, McGraw-Hill, 1966. Zbl0145.43303MR35 #1007
  21. [SV] A. SUSLIN and V. VOEVODSKY, Relative cycles and Chow sheaves, Cycles, transfers, and Motivic Homology Theories (V. Voevodsky, A. Suslin, and E. Friedlander, ed.), Annals of Math. Studies, 143 (2000), 10-86. Zbl1019.14004MR1764199

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.