Relative Chow correspondences and the Griffiths group
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 4, page 1073-1098
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFriedlander, Eric M.. "Relative Chow correspondences and the Griffiths group." Annales de l'institut Fourier 50.4 (2000): 1073-1098. <http://eudml.org/doc/75449>.
@article{Friedlander2000,
abstract = {A relativization of earlier constructions and Nori’s rational Lefschetz theorem enable interesting examples of the “topological filtration” on algebraic cycles.},
author = {Friedlander, Eric M.},
journal = {Annales de l'institut Fourier},
keywords = {algebraic cycles; Griffiths group; topological filtration; Chow correspondences},
language = {eng},
number = {4},
pages = {1073-1098},
publisher = {Association des Annales de l'Institut Fourier},
title = {Relative Chow correspondences and the Griffiths group},
url = {http://eudml.org/doc/75449},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Friedlander, Eric M.
TI - Relative Chow correspondences and the Griffiths group
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 4
SP - 1073
EP - 1098
AB - A relativization of earlier constructions and Nori’s rational Lefschetz theorem enable interesting examples of the “topological filtration” on algebraic cycles.
LA - eng
KW - algebraic cycles; Griffiths group; topological filtration; Chow correspondences
UR - http://eudml.org/doc/75449
ER -
References
top- [A] F. ALMGREN, Homotopy groups of the integral cycle groups, Topology, 1 (1962), 257-299. Zbl0118.18503MR26 #4355
- [AF] A. ANDREOTTI and T. FRANKEL, The Lefschetz theorem on hyperplane sections, Ann. of Math., (2), 69 (1959), 713-717. Zbl0115.38405MR31 #1685
- [B] D. BARLET, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finite, Fonctions de plusieurs variables, II, Lecture Notes in Math. 482, Springer-Verlag, (1975), 1-158. Zbl0331.32008MR53 #3347
- [De] P. DELIGNE, Théorie de Hodge III, Pub. I.H.E.S., 44 (1974), 5-77. Zbl0237.14003MR58 #16653b
- [D] A. DOLD, Lectures on Algebraic Topology, Springer-Verlag, 1972. Zbl0234.55001MR54 #3685
- [F1] E. FRIEDLANDER, Algebraic cycles, Chow varieties, and Lawson homology, Compositio Math., 77 (1991), 55-93. Zbl0754.14011MR92a:14005
- [F2] E. FRIEDLANDER, Filtrations on algebraic cycles and homology, Annales Ec. Norm. Sup. 4e série, t. 28 (1995), 317-343. Zbl0854.14006MR96i:14004
- [F3] E. FRIEDLANDER, Algebraic cocycles on quasi-projective varieties, Compositio Math., 110 (1998), 127-162. Zbl0915.14004MR2000a:14024
- [F4] E. FRIEDLANDER, Bloch-Ogus properties for topological cycle theory, Annales Ec. Norm. Sup., 33 (2000), 57-79. Zbl0982.14011MR2000m:14025
- [FG] E. FRIEDLANDER and O. GABBER, Cycle spaces and intersection theory, in Topological Methods in Modern Mathematics, (1993), 325-370. Zbl0830.14008MR94j:14010
- [FL1] E. FRIEDLANDER and H.B. LAWSON, A theory of algebraic cocycles, Annals of Math., 136 (1992), 361-428. Zbl0788.14014MR93g:14013
- [FL2] E. FRIEDLANDER and H.B. LAWSON, Moving algebraic cycles of bounded degree, Inventiones Math., 132 (1998), 92-119. Zbl0936.14005MR99k:14011
- [FL3] E. FRIEDLANDER and H.B. LAWSON, Graph mappings and Poincaré duality, preprint. Zbl1159.55001
- [FM1] E. FRIEDLANDER and B. MAZUR, Filtrations on the homology of algebraic varieties, Memoir, A.M.S., 529 (1994). Zbl0841.14019MR95a:14023
- [FM2] E. FRIEDLANDER and B. MAZUR, Correspondence homomorphisms for singular varieties, Ann. Inst. Fourier, Grenoble, 44-3 (1994), 703-727. Zbl0811.14007MR95j:14009
- [FW] E. FRIEDLANDER and M. WALKER, Function spaces and continuous algebraic pairings for varieties, to appear in Compositio Math. Zbl1049.14003
- [H] H. HIRONAKA, Triangulations of algebraic sets, Proc. of Symposia in Pure Math., 29 (1975), 165-185. Zbl0332.14001MR51 #10331
- [LiF] P. LIMA-FILHO, Completions and fibrations for topological monoids, Trans. A.M.S., 340 (1993), 127-147. Zbl0788.55013MR94a:55009
- [N] M. NORI, Algebraic cycles and Hodge theoretic connectivity, Inventiones Math., 111 (1993), 349-373. Zbl0822.14008MR94b:14007
- [Sp] E. SPANIER, Algebraic Topology, McGraw-Hill, 1966. Zbl0145.43303MR35 #1007
- [SV] A. SUSLIN and V. VOEVODSKY, Relative cycles and Chow sheaves, Cycles, transfers, and Motivic Homology Theories (V. Voevodsky, A. Suslin, and E. Friedlander, ed.), Annals of Math. Studies, 143 (2000), 10-86. Zbl1019.14004MR1764199
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.