Correspondence homomorphisms for singular varieties

Eric M. Friedlander; Barry Mazur

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 3, page 703-727
  • ISSN: 0373-0956

Abstract

top
We study certain kinds of geometric correspondences between (possibly singular) algebraic varieties and we obtain comparison results regarding natural filtrations on the homology of varieties.

How to cite

top

Friedlander, Eric M., and Mazur, Barry. "Correspondence homomorphisms for singular varieties." Annales de l'institut Fourier 44.3 (1994): 703-727. <http://eudml.org/doc/75079>.

@article{Friedlander1994,
abstract = {We study certain kinds of geometric correspondences between (possibly singular) algebraic varieties and we obtain comparison results regarding natural filtrations on the homology of varieties.},
author = {Friedlander, Eric M., Mazur, Barry},
journal = {Annales de l'institut Fourier},
keywords = {algebraic cycle; geometric correspondences; filtrations on the homology of varieties},
language = {eng},
number = {3},
pages = {703-727},
publisher = {Association des Annales de l'Institut Fourier},
title = {Correspondence homomorphisms for singular varieties},
url = {http://eudml.org/doc/75079},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Friedlander, Eric M.
AU - Mazur, Barry
TI - Correspondence homomorphisms for singular varieties
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 703
EP - 727
AB - We study certain kinds of geometric correspondences between (possibly singular) algebraic varieties and we obtain comparison results regarding natural filtrations on the homology of varieties.
LA - eng
KW - algebraic cycle; geometric correspondences; filtrations on the homology of varieties
UR - http://eudml.org/doc/75079
ER -

References

top
  1. [AF] A. ANDREOTTI and T. FRANKEL, The Lefschetz theorem on hyperplane sections, Ann. of Math., (2) 69 (1959), 713-717. Zbl0115.38405MR31 #1685
  2. [B] D. BARLET, Notes on the “Joint Theorem”, preprint, Institut Elie Cartan, Université Nancy, 1991. 
  3. [D] A. DOLD, Lectures on Algebraic Topology, Springer-Verlag, 1972. Zbl0234.55001MR54 #3685
  4. [DT] A. DOLD and R. THOM, Quasifaserungen und unendliche symmetrische produkte, Ann. of Math., (2) 67 (1958), 239-281. Zbl0091.37102MR20 #3542
  5. [F1] E. FRIEDLANDER, Algebraic cycles, Chow varieties, and Lawson homology, Compositio Mathematica, 77 (1991), 55-93. Zbl0754.14011MR92a:14005
  6. [F2] E. FRIEDLANDER, Filtrations on algebraic cycles and homology, to appear in Ann. Ec. Norm. Sup. Zbl0854.14006
  7. [FG] E. FRIEDLANDER and O. GABBER, Cycle spaces and intesection theory, in Topological Methods in Modern Mathematics, Publish or Perish 1993, 325-370. Zbl0830.14008MR94j:14010
  8. [FL] E. FRIEDLANDER and H. B. LAWSON, A theory of algebraic cocycles, Annals of Math., 136 (1992), 361-428. Zbl0788.14014MR93g:14013
  9. [FM] E. FRIEDLANDER and B. MAZUR, Filtrations on the homology of algebraic varieties, to appear as a Memoir of the A.M.S. Zbl0841.14019
  10. [G] A. GROTHENDIECK, Hodge's general conjecture is false for trivial reasons, Topology, 8 (1969), 299-303. Zbl0177.49002MR40 #5624
  11. [H] H. HIRONAKA, Triangulation of algebraic sets, pp. 165-185, in Algebraic Geometry, Arcata 1974 : Proceedings of a Symposium in Pure Mathematics 29, A.M.S. Providence, 1975. Zbl0332.14001MR51 #10331
  12. [L] H. B. LAWSON, Algebraic cycles and homotopy theory, Annals of Math., 129 (1989), 253-291. Zbl0688.14006MR90h:14008
  13. [LM] H. B. LAWSON and M. L. MICHELSOHN, Algebraic cycles, Bott periodicity, and the Chern characteristic map, The Mathematical Heritage of Herman Weyl, AMS 1988, 241-264. Zbl0665.14001MR90d:14010
  14. [LF] P. LIMA-FILHO, Completion and fibrations for topological monoids and excision for Lawson homology, Trans. A.M.S., 340, n° 1 (1993), 127-147. Zbl0788.55013MR94a:55009
  15. [MS] D. McDUFF and G. SEGAL, Homology fibrations and the “group completion” theorem, Inventiones Math., 31 (1967), 279-284. Zbl0306.55020MR53 #6547
  16. [M] J. MILNOR, On spaces having the homotopy type of a CW complex, Trans. A.M.S., 90 (1959), 272-280. Zbl0084.39002MR20 #6700
  17. [MM] J. MILNOR and J. MOORE, On the structure of Hopf algebras, Annals of Math., (2) 81 (1965), 211-264. Zbl0163.28202MR30 #4259
  18. [V] V. VOEVODSKY, Harvard Ph. D Thesis, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.