-adic measures attached to Siegel modular forms
Siegfried Böcherer; Claus-Günther Schmidt
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 5, page 1375-1443
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBöcherer, Siegfried, and Schmidt, Claus-Günther. "$p$-adic measures attached to Siegel modular forms." Annales de l'institut Fourier 50.5 (2000): 1375-1443. <http://eudml.org/doc/75460>.
@article{Böcherer2000,
abstract = {We study the critical values of the complex standard-$L$-function attached to a holomorphic Siegel modular form and of the twists of the $L$-function by Dirichlet characters. Our main object is for a fixed rational prime number $p$ to interpolate $p$-adically the essentially algebraic critical $L$-values as the Dirichlet character varies thus providing a systematic control of denominators of critical values by generalized Kummer congruences. In order to organize this information we prove the existence of $p$-adic measures such that integration of any Dirichlet character of $p$-power conductor over the measure yields the suitably normalized critical value of the complex $L$-function twisted by the Dirichlet character. In a standard manner the $p$-adic measures naturally define $p$-adic $L$-functions which hence $p$-adically interpolate the normalized critical values.},
author = {Böcherer, Siegfried, Schmidt, Claus-Günther},
journal = {Annales de l'institut Fourier},
keywords = {-adic interpolation; standard -functions; Siegel modular forms; algebraic special -values; -adic measures},
language = {eng},
number = {5},
pages = {1375-1443},
publisher = {Association des Annales de l'Institut Fourier},
title = {$p$-adic measures attached to Siegel modular forms},
url = {http://eudml.org/doc/75460},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Böcherer, Siegfried
AU - Schmidt, Claus-Günther
TI - $p$-adic measures attached to Siegel modular forms
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 5
SP - 1375
EP - 1443
AB - We study the critical values of the complex standard-$L$-function attached to a holomorphic Siegel modular form and of the twists of the $L$-function by Dirichlet characters. Our main object is for a fixed rational prime number $p$ to interpolate $p$-adically the essentially algebraic critical $L$-values as the Dirichlet character varies thus providing a systematic control of denominators of critical values by generalized Kummer congruences. In order to organize this information we prove the existence of $p$-adic measures such that integration of any Dirichlet character of $p$-power conductor over the measure yields the suitably normalized critical value of the complex $L$-function twisted by the Dirichlet character. In a standard manner the $p$-adic measures naturally define $p$-adic $L$-functions which hence $p$-adically interpolate the normalized critical values.
LA - eng
KW - -adic interpolation; standard -functions; Siegel modular forms; algebraic special -values; -adic measures
UR - http://eudml.org/doc/75460
ER -
References
top- [1] A.N. ANDRIANOV, V.L. KALININ, On the analytic properties of standard zeta functions of Siegel modular forms, Math. USSR Sbornik, 35 (1979), 1-17. Zbl0417.10024
- [2] A.N. ANDRIANOV, Quadratic Forms and Hecke Operators. Grundlehren der mathematischen Wissenschaften 286, Berlin-Heidelberg-New York, Springer, 1987. Zbl0613.10023
- [3] S. BÖCHERER, Über die Fourier-Jacobi-Entwicklung der Siegelschen Eisensteinreihen, Math.Z., 183 (1983), 21-43. Zbl0497.10020
- [4] S. BÖCHERER, Über die Fourier-Jacobi-Entwicklung der Siegelschen Eisensteinreihen II, Math.Z., 189 (1985), 81-100. Zbl0558.10022
- [5] S. BÖCHERER, Über die Fourierkoeffizienten Siegelscher Eisensteinreihen, Manuscripta Math., 45 (1984), 273-288. Zbl0533.10023
- [6] S. BÖCHERER, Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe, J. reine angew. Math., 362 (1985), 146-168. Zbl0565.10025
- [7] S. BÖCHERER, Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe, Abh. Math. Sem. Univ. Hamburg, 56 (1986), 35-47. Zbl0613.10026
- [8] U. CHRISTIAN, Selberg's Zeta-, L-, and Eisenstein Series. Lecture Notes in Math. 1030. Berlin-Heidelberg-New York, Springer, 1983. Zbl0519.10018MR85k:11024
- [9] U. CHRISTIAN, Maaßsche L-Reihen und eine Identität für Gaußsche Summen, Abh. Math. Sem. Univ. Hamburg, 54 (1984), 163-175. Zbl0556.10021MR86h:11041
- [10] P. DELIGNE, Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., 33, Part 2 (1979), 313-346. Zbl0449.10022MR81d:12009
- [11] P. FEIT, Poles and residues of Eisenstein series for symplectic and unitary groups, Memoirs AMS, 61 (1986), no 346. Zbl0591.10017MR88a:11049
- [12] E. FREITAG, Siegelsche Modulfunktionen. Grundlehren der mathematischen Wissenschaften 254, Berlin-Heidelberg-New York, 1983. Zbl0498.10016MR88b:11027
- [13] P.B. GARRETT, M. HARRIS, Special values of triple product L-functions, Amer. J. Math., 115 (1993), 159-238. Zbl0776.11027MR94e:11058
- [14] S. GELBART, I. PIATETSKI-SHAPIRO, S. RALLIS, Explicit Constructions of Automorphic L-Functions. Springer Lecture Notes in Math. 1254, Berlin-Heidelberg-New York, Springer, 1987. Zbl0612.10022MR89k:11038
- [15] M. HARRIS, Special values of zeta functions attached to Siegel modular forms, Ann Sci. Ecole Norm. Sup., 14 (1981), 77-120. Zbl0465.10022MR82m:10046
- [16] L.K. HUA, Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monographs 6, AMS 1963. Zbl0112.07402
- [17] Y. KITAOKA, Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J., 95 (1984), 73-84. Zbl0551.10025MR86b:11038
- [18] H. MAAß, Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 216, Berlin-Heidelberg-New York, Springer, 1971. Zbl0224.10028MR49 #8938
- [19] Sh.-I. MIZUMOTO, Poles and residues of standard L-functions attached to Siegel modular forms, Math. Ann., 289 (1991), 589-612. Zbl0713.11035MR93b:11058
- [20] A.A. PANCHISHKIN, Non-Archimedean L-Functions of Siegel and Hilbert Modular Forms. Springer Lecture Notes in Math. 1471, Berlin-Heidelberg-New York, Springer, 1991. Zbl0732.11026MR93a:11044
- [21] A.A. PANCHISHKIN, Admissible Non-Archimedean Standard Zeta Functions associated with Siegel Modular Forms, Proc. Symp. Pure Math., 55, Part 2, 251-292. Zbl0837.11029MR95j:11043
- [22] I. PIATETSKI-SHAPIRO, S. RALLIS, A new way to get Euler products, J. reine angew. Math., 392 (1988), 110-124. Zbl0651.10021MR90c:11032
- [23] C.G. SCHMIDT, P-adic measures attached to automorphic representations of G1(3), Invent. Math., 92 (1988), 597-631. Zbl0656.10023MR90f:11032
- [24] G. SHIMURA, On the Fourier coefficients of modular forms of several variables, Nachr. Akad. Wiss. Göttingen, 1975, 261-268. Zbl0332.32024MR58 #5528
- [25] G. SHIMURA, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., XXIX (1976), 783-804. Zbl0348.10015MR55 #7925
- [26] G. SHIMURA, Arithmetic of differential operators on symmetric domains, Duke Math. J., 48 (1981), 813-843. Zbl0487.10021MR86m:11032
- [27] G. SHIMURA—, Confluent hypergeometric functions on tube domains, Math. Ann., 269 (1982), 269-302. Zbl0502.10013MR84f:32040
- [28] G. SHIMURA, On Eisenstein Series, Duke Math. J., 50 (1983), 417-476. Zbl0519.10019MR84k:10019
- [29] G. SHIMURA, On differential operators attached to certain representations of classical groups, Invent. Math., 77 (1984), 463-488. Zbl0558.10023MR86c:11034
- [30] G. SHIMURA, Differential operators and the singular values of Eisenstein series, Duke Math. J., 51 (1984), 261-329. Zbl0546.10025MR85h:11031
- [31] G. SHIMURA, On Eisenstein series of half-integral weight, Duke Math. J., 52 (1985), 281-314. Zbl0577.10025MR87g:11053
- [32] G. SHIMURA, On a class of nearly holomorphic automorphic forms, Annals of Math., 123 (1986), 347-406. Zbl0593.10022MR88b:11025a
- [33] G. SHIMURA, Nearly holomorphic functions on hermitian symmetric spaces, Math. Ann., 278 (1987), 1-28. Zbl0636.10023MR89b:32044
- [34] G. SHIMURA, Invariant differential operators on hermitian symmetric spaces, Annals of Math., 132 (1990), 237-272. Zbl0718.11020MR91i:22015
- [35] G. SHIMURA, Differential Operators, Holomorphic Projection, and Singular Forms, Duke Math. J., 76 (1994), 141-173. Zbl0829.11029MR95k:11072
- [36] J. STURM, The critical values of zeta functions associated to the symplectic group, Duke Math. J., 48 (1981), 327-350. Zbl0483.10026MR83c:10035
- [37] T. TAMAGAWA, On the zeta functions of a division algebra, Annals of Math., 77 (1963), 387-405. Zbl0222.12018MR26 #2468
- [38] L. WASHINGTON, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Berlin-Heidelberg-New York, Springer, 1982. Zbl0484.12001MR85g:11001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.