Special values of zeta functions attached to Siegel modular forms

Michael Harris

Annales scientifiques de l'École Normale Supérieure (1981)

  • Volume: 14, Issue: 1, page 77-120
  • ISSN: 0012-9593

How to cite

top

Harris, Michael. "Special values of zeta functions attached to Siegel modular forms." Annales scientifiques de l'École Normale Supérieure 14.1 (1981): 77-120. <http://eudml.org/doc/82068>.

@article{Harris1981,
author = {Harris, Michael},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Siegel modular forms; Dirichlet series; arithmetic properties},
language = {eng},
number = {1},
pages = {77-120},
publisher = {Elsevier},
title = {Special values of zeta functions attached to Siegel modular forms},
url = {http://eudml.org/doc/82068},
volume = {14},
year = {1981},
}

TY - JOUR
AU - Harris, Michael
TI - Special values of zeta functions attached to Siegel modular forms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1981
PB - Elsevier
VL - 14
IS - 1
SP - 77
EP - 120
LA - eng
KW - Siegel modular forms; Dirichlet series; arithmetic properties
UR - http://eudml.org/doc/82068
ER -

References

top
  1. [1] A. N. ANDRIANOV, Symmetric Squares of Zeta-Functions of Siegel's Modular Forms of Genus 2 (Trudy. Mat. Inst. Steklov, Vol. 142, 1976, pp. 22-45). Zbl0432.10012MR58 #27786
  2. [2] A. N. ANDRIANOV and V. L. KALININ, On Analytic Properties of the Standard Zeta-Functions of Siegel Modular Forms (Mat. Sbornik, Vol. 106, 1978, pp. 323-339). Zbl0389.10023MR58 #21950
  3. [3] W. L. BAILY Jr., On the Theory of θ-Functions, the Moduli of Abelian Varieties, and the Moduli of Curves (Ann. of Math., Vol. 75, 1962, pp. 342-381). Zbl0147.39702
  4. [4] W. L. BAILY Jr. and A. BOREL, Compactification of Arithmetic Quotients of Bounded Symmetric Domains (Ann. of Math., Vol. 84, 1966, pp. 442-528). Zbl0154.08602MR35 #6870
  5. [5] A. BOREL, Introduction to Automorphic Forms, in Proc. Symp. Pure Math., Vol. IX, Amer. Math. Soc., Providence, 1966, pp. 199-210. Zbl0191.09601MR34 #7465
  6. [6] P. DELIGNE, Travaux de Shimura (Sém. Bourbaki, Vol. 23, (1970/1971), No. 389). Zbl0225.14007
  7. [7] P. DELIGNE, Valeurs de fonctions L et périodes d'intégrales, in Proc. Symp. Pure Math., Vol. XXXIII, Amer. Math. Soc., Providence, 1979, Part 2, pp. 313-346. Zbl0449.10022MR81d:12009
  8. [8] J. DIXMIER, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR58 #16803a
  9. [9] E. FREITAG, Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe (Inv. Math., Vol. 30, 1975, pp. 181-196). Zbl0314.32017MR56 #8927
  10. [10] V. A. GRITSENKO, Analytic Continuation of Symmetric Squares (Mat. Sbornik, Vol. 107, 1978, pp. 323-346). Zbl0394.10014MR80c:10027
  11. [11] A. GROTHENDIECK, On the De Rham Cohomology of Algebraic Varieties (Publ. Math. I.H.E.S., Vol. 29, 1966). Zbl0145.17602MR33 #7343
  12. [12] HARISH-CHANDRA, Representations of Semi-Simple Lie groups IV, V, VI (Am. J. Math., Vol. 77-78, 1955-1956). Zbl0070.11602MR17,282c
  13. [13] HARISH-CHANDRA, Automorphic Forms on Semi-Simple Lie Groups (Lecture Notes in Math., 62, 1968). Zbl0186.04702MR38 #1216
  14. [14] M. HARRIS, A Note on Three Lemmas of Shimura (Duke Math., J., Vol. 46, 1979, pp. 871-879). Zbl0433.10016MR81c:10027
  15. [15] H. P. JAKOBSEN, Intertwining Differential Operators for Mp (n, R) and SU(n, n) (Trans. A.M.S., Vol. 246, 1978, pp. 311-337). Zbl0403.22010MR80f:22009
  16. [16] H. P. JAKOBSEN and M. VERGNE, Restrictions and Expansions of Holomorphic Representations (J. Fun. Anal., Vol. 34, 1979, pp. 29-53). Zbl0433.22011MR80m:22020
  17. [17] N. M. KATZ, Algebraic Solutions of Differential Equations (p-Curvature and the Hodge Filtration) (Inv. Math., Vol. 18, 1972, pp. 1-118). Zbl0278.14004MR49 #2728
  18. [18] N. M. KATZ, p-Adic Properties of Modular Schemes and Modular Forms, in Modular Functions of One Variable III (Lecture Notes in Math., No. 350, 1973, pp. 63-190). Zbl0271.10033MR56 #5434
  19. [19] N. M. KATZ, p-Adic L-Functions for CM Fields (Inv. Math., Vol. 49, 1978, pp. 199-297). Zbl0417.12003MR80h:10039
  20. [20] N. M. KATZ and T. Oda, On the Differentiation of De Rham Cohomology Classes with Respect to Parameters (J. Math. Kyoto Univ., Vol. 8, 1968, pp. 199-213). Zbl0165.54802MR38 #5792
  21. [21] R. P. LANGLANDS, Euler Products, New Haven, Yale University Press, 1971. Zbl0231.20016
  22. [22] H. MAAβ, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen (Math. Ann., Vol. 126, 1953, pp. 44-68). Zbl0053.05602MR16,449d
  23. [23] H. MAAβ, Siegel's Modular Forms and Dirichlet Series (Lecture Notes in Math., No. 216, 1971). Zbl0224.10028MR49 #8938
  24. [24] YU. I. MANIN and A. A. PANCHISHKIN, Twists of Hecke Series and Their Values at Integer Points (Mat. Sbornik, Vol. 104, 1977, pp. 617-651). Zbl0392.10028
  25. [25] D. MUMFORD, Geometric Invariant Theory, Springer-Verlag, Berlin, 1965. Zbl0147.39304MR35 #5451
  26. [26] D. MUMFORD, Abelian Varieties, Oxford University Press, London, 1970. Zbl0223.14022MR44 #219
  27. [27] H. L. RESNIKOFF, Automorphic Forms of Singular Weight are Singular Forms (Math. Ann., Vol. 215, 1975, pp. 173-193). Zbl0304.32019MR52 #3065
  28. [28] H. ROSSI and M. VERGNE, Analytic Continuation of the Holomorphic Discrete Series, (Acta. Math., Vol. 136, 1976, pp. 1-59). Zbl0356.32020MR58 #1032
  29. [29] I. SATAKE, Theory of Spherical Functions on Reductive Algebraic Groups Over p-Adic Fields (Publ. Math. I.H.E.S., Vol. 18, 1963, pp. 1-69). Zbl0122.28501MR33 #4059
  30. [30] W. SCHMID, Die Randwerte holomorpher Funktionen auf Hermitesch symmetrischen Raumen (Inv. Math., Vol. 9, 1969, pp. 61-80). Zbl0219.32013MR41 #3806
  31. [31] Séminaire H. Cartan 1957/1958, Fonctions Automorphes, Paris, Secrétariat Mathématique, 1958. Zbl0101.05601
  32. [32] G. SHIMURA, On Some Arithmetic Properties of Modular Forms of One and Several Variables (Ann. of Math., Vol. 102, 1975, pp. 491-515). Zbl0327.10028MR58 #10758
  33. [33] G. SHIMURA, On the Fourier Coefficients of Modular Forms of Several Variables (Göttingen Nachr. Akad. Wiss., 1975, pp. 261-268). Zbl0332.32024MR58 #5528
  34. [34] G. SHIMURA, The Special Values of the Zeta Functions Associated with Cusp Forms, (Comm. Pure Appl. Math., Vol. 29, 1976, pp. 783-804). Zbl0348.10015MR55 #7925
  35. [35] G. SHIMURA, On the Periods of Modular Forms (Math. Ann., Vol. 229, 1977, pp. 211-221). Zbl0363.10019MR57 #3080
  36. [36] G. SHIMURA, On the Derivatives of Theta Functions and Modular Forms (Duke Math. J., Vol. 44, 1977, pp. 365-387). Zbl0371.14023MR57 #5911
  37. [37] G. SHIMURA, The Special Values of the Zeta Functions Associated with Hilbert modular forms, (Duke Math. J., Vol. 45, 1978, pp. 637-679). Zbl0394.10015MR80a:10043
  38. [38] G. SHIMURA, On Certain Reciprocity-Laws for Theta Functions and Modular Forms (Acta. Math., Vol. 141, 1978, pp. 35-71). Zbl0402.10030MR58 #10757
  39. [39] T. SHINTANI, On automorphic Forms on Unitary Groups of Order 3, preprint. 
  40. [40] C. L. SIEGEL, Einführung in die Theorie der Modulfunktionen n-ten Grades (Math. Ann., Vol. 116, 1939, pp. 617-657). Zbl0021.20302MR1,203fJFM65.0357.01
  41. [41] C. L. SIEGEL, Symplectic Geometry (Am. J. Math., Vol. 65, 1943, pp. 1-86). Zbl0138.31401MR4,242b
  42. [42] N. WALLACH, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, Inc., New York, 1973. Zbl0265.22022MR58 #16978
  43. [42a] N. WALLACH, Representations of Reductive Lie groups, in Proc. Symp. Pure Math., Vol. XXXIII, Amer. Math. Soc., Providence, 1979, Part 1, pp. 71-86). Zbl0421.22006MR80m:22024
  44. [43] G. WARNER, Harmonic Analysis on Semi-Simple Lie Groups I, Springer-Verlag, Berlin, 1972. Zbl0265.22020
  45. [44] A. WEIL, Introduction à l'étude des variétés kählériennes, nouvelle édition corrigée, Hermann, Paris, 1958. Zbl0205.51701
  46. [45] H. WEYL, The Classical Groups, Princeton University Press, 1946. Zbl1024.20502
  47. [46] D. ZAGIER, Modular Forms Whose Fourier Coefficients Involve Zeta-Functions of Quadratic Fields, in Modular Functions of One Variable VI (Lecture Notes in Math., No. 627, 1977, pp. 105-170). Zbl0372.10017MR58 #5525
  48. [47] J. STURM, Special Values of Zeta Functions, and Eisenstein Series of Half Integral Weight (Am. J. Math., Vol. 102, 1980, pp. 219-240). Zbl0433.10015MR82b:10033a
  49. [48] D. MUMFORD, An Analytic Construction of Degenerating Abelian Varieties Over Complete Local Rings (Compositio Math., Vol. 24, 1972, pp. 239-272). Zbl0241.14020MR50 #4593
  50. [49] A. N. ANDRIANOV, On Factorization of Hecke Polynomials for the Symplectic Group of Genus n, (Math. U.S.S.R. Sbornik, Vol. 33, 1977, pp. 343-373). Zbl0399.10029
  51. [50] A. N. ANDRIANOV, Euler Expansions of Theta-Transforms of Siegel Modular Forms of Degree n (Math. U.S.S.R. Sbornik, Vol. 34, 1978, pp. 259-300). Zbl0412.10021
  52. [51] M. KAREL, Eisenstein Series and Fields of Definition (Compositio Math., Vol. 37, 1978, pp. 121-169). Zbl0399.10027MR80c:10028
  53. [52] M. HARRIS and H. P. JAKOBSEN, Singular Modular Forms and Singular Holomorphic Representations, in preparation. Zbl0466.32017
  54. [53] J. L. BRYLINSKI, "l-motifs" et formes automorphes, preprint. 
  55. [54] A. N. ANDRIANOV, The Multiplicative Arithmetic of Siegel Modular Forms (Russian Math. Surveys, Vol. 34, 1979, pp. 75-148). Zbl0427.10017MR80f:10032
  56. [55] M. HARRIS, The Rationality of Holomorphic Eisenstein Series [Inv. Math. (in press)]. Zbl0452.10031

Citations in EuDML Documents

top
  1. Andrea Mori, A condition for the rationality of certain elliptic modular forms over primes dividing the level
  2. Andrea Mori, An integrality criterion for elliptic modular forms
  3. Andrea Mori, A characterization of integral elliptic automorphic forms
  4. Ellen E. Eischen, p -adic Differential Operators on Automorphic Forms on Unitary Groups
  5. Michael Harris, Arithmetic vector bundles and automorphic forms on Shimura varieties, II
  6. Siegfried Böcherer, Claus-Günther Schmidt, p -adic measures attached to Siegel modular forms

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.