L'intégrale fonctionnelle de Feynman. Une introduction

Cécile Dewitt Morette

Annales de l'I.H.P. Physique théorique (1969)

  • Volume: 11, Issue: 2, page 153-206
  • ISSN: 0246-0211

How to cite

top

Dewitt Morette, Cécile. "L'intégrale fonctionnelle de Feynman. Une introduction." Annales de l'I.H.P. Physique théorique 11.2 (1969): 153-206. <http://eudml.org/doc/75637>.

@article{DewittMorette1969,
author = {Dewitt Morette, Cécile},
journal = {Annales de l'I.H.P. Physique théorique},
language = {fre},
number = {2},
pages = {153-206},
publisher = {Gauthier-Villars},
title = {L'intégrale fonctionnelle de Feynman. Une introduction},
url = {http://eudml.org/doc/75637},
volume = {11},
year = {1969},
}

TY - JOUR
AU - Dewitt Morette, Cécile
TI - L'intégrale fonctionnelle de Feynman. Une introduction
JO - Annales de l'I.H.P. Physique théorique
PY - 1969
PB - Gauthier-Villars
VL - 11
IS - 2
SP - 153
EP - 206
LA - fre
UR - http://eudml.org/doc/75637
ER -

References

top
  1. [1] R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals. McGraw-Hill Book Company, 1965. Zbl0176.54902
  2. [2] R.P. Feynman, R.B. Leighton and M. Sands, The Feynman lectures on physics. Quantum Mechanics, Vol. III. Addison-Wesley Publishing Company, Inc., 1965. Zbl0131.38703MR213079
  3. [3] R.P. Feynman, Space-Time approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics, t. 20, 1948, p. 367. MR26940
  4. [4] R.P. Feynamn, The Theory of Positrons. The Physical Review, t. 76, 1949, p. 749. Zbl0037.12406
  5. [5] R.P. Feynman, Space-Time approach to Quantum Electrodynamics. The Physical Review, t. 76, 1949, p. 769. Zbl0038.13302MR35687
  6. [6] R.P. Feynman, Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction. The Physical Review, t. 80, 1950, p. 440. Zbl0040.28002MR41726
  7. [7] R.P. Feynman, Acta Physica Polonica, t. 24, 1963, p. 697. MR165951
  8. [8] F.J. Dyson, The Radiation Theories of Tomonaga, Schwinger and Teynman. The Physical Review, t. 75, 1949, p. 486. Zbl0032.23702MR28203
  9. [9] Cécile Morette, On the definition and approximation of Feynman's Path Integrals. Physical Review, t. 81, 1951, p. 848. Zbl0042.45506MR41009
  10. [10] W. Pauli, Ausgerwählte kapitel aus der Feldquantisierung. Notes de cours prises par U. Hochstrasser et M. F. Schafroth a E. T. H. Zurich, 1951, Appendix. 
  11. [11] Ph. Choquard, Traitement semi-classique des forces générales dans la représentation de Feynman. Helvetica Physica Acta, t. 28, 1955, p. 89. Zbl0064.21603MR72038
  12. [12] Bryce S. Dewitt, Dynamical Theory in Curved Spaces. I. A review of the classical and Quantum Action Principles. Reviews of Modern Physics, t. 29, 1957, p. 377. Zbl0118.23301MR95691
  13. [13] Conference on the role of gravitation in physics. Astia AD 118180, 1957. 
  14. [14] H. Leutwyler, Gravitational Field : Equivalence of Feynman Quantization and Canonical Quantization. The Physical Review, t. 134, 1964, p. B1155. Zbl0129.41204MR164605
  15. [15] Edward Nelson, Feynman Integrals and the Schrodinger Equation. Journal of Mathematical Physics, t. 5, 1964, p. 332. Zbl0133.22905MR161189
  16. [16] M. Clutton-Brock, Feynman's kernel and the classical path. Proceedings of the Cambridge Philosophical Society, t. 61, 1965, p. 210. MR169560
  17. [17] Bryce S. Dewitt, Dynamical Theory of groups and fields. Documents on Modern PhysicsGordon and Breach, 1965. Zbl0169.57101MR187652
  18. [18] Bryce S. Dewitt, Quantum theory of gravity. II. The manifestly covariant theory. The Physical Review, t. 162, 1967, p. 1195. Zbl0161.46501
  19. [19] Mark Kac, Lectures in Applied Mathematics, vol. I, Probability and Related Topics in Physical Science. Summer Seminar Boulder, 1957, Interscience Publishers, 1950. MR102849
  20. [20] F.A. Berezin, The method of Second Quantization. Academic Press, 1966. Zbl0151.44001MR208930
  21. [21] Ludwig D. Faddeev and V.N. Popov, Feynman diagrams for the Yang-Mills Field. Physics Letters, t. 25B, 1967, p. 29. 
  22. [22] L.D. Faddeev and V.N. Popov, Perturbation theory for Gauge invariant Fields (en russe). Zbl1088.81075
  23. [23] L.D. Faddeev, Communication Fifth International Conference on Gravitation and the Theory of Relativity, Tbilisi, 1968. 
  24. [24] S. Mandelstam, Feynman Rules for Electromagnetic and Yang-Mills Fields from the Gauge-Independent Field-Theoretic Formalism. The Physical Review, t. 175, 1968, p. 1580. 
  25. [25] S. Mandelstam, Feynman Rules for the Gravitational Field from the Coordinate-Independent Field-Theoretic Formalism. The Physical Review, t. 175, 1968, p. 1604. 
  26. [26] LawrenceS. SCHULMAN, A path integral for spin. The Physical Review, t. 176, 1968, p. 1604. MR237149
  27. [27] V.S. Buslaev, Continuum Integrals and the Asymptotic Behaviour of the Solutions of Parabolic Equations as t → 0. Applications to Diffraction. Topics in Mathematical Physics, series edited by M. Sh. Birman, vol. 2, Spectral Theory and Problems in Diffraction. Plenum Publishing Corporation, 1967. 
  28. [28] Jan Tarski, Commutative Integration in Hilbert Spaces and Applications to Quantum Field Theory. Acta Universitatis Wrotislaviensis, 88, t. I, 1968, p. 42, Wroclaw. 
  29. [29] Jan Tarski, Functional Integrals in Quantum Fiels Theory and Related Topics. Lectures in Theoretical Physics, vol. XA, A. O. Barut and W. E. Brittin, Ed., Gordon and Breach, 1968. MR235808
  30. [30] J.L. Kelley, General Topology. D. Van Nostrand Inc., New York, 1955. Zbl0066.16604MR70144
  31. [31] J.H. Van Vleck, The correspondence principle in the statistical interpretation of quantum mechanics. Proceedings of the National Academy of Sciences of the U. S. A., t. 14, 1928, p. 178. Zbl54.0976.01JFM54.0976.01
  32. [32] William Feller, An Introduction to Probability Theory and Its Applications. John Wiley and Sons, Inc., 1966. Zbl0138.10207MR210154
  33. [33] D. Kershaw, Theory of Hidden Variables. The Physical Review, t.136B, 1964, p. 1850. MR186019
  34. [34] G.G. Comisar, Brownian Motion Model of Non Relativistic Quantum Mechanics. The Physical Review, t. 138B, 1965, p. 1332. Zbl0132.22503MR189459
  35. [35] J. Schwinger, Exterior Algebra and the Action Principle. I. Proc. National Academy of Science, U. S., t. 48, 1952, p. 603. Zbl0116.45002
  36. [36] J. Schwinger, Quantum Variables and the Action Principle. Proc. National Academy of Science, U. S., t. 47, 1961, p. 1075. Zbl0107.22502MR135083
  37. [37] J. Schwinger, On the Green's Functions of Quantized Fields. I. Proc. National Academy of Science, U. S., t. 37, 1951, p. 452. Zbl0044.43001MR45065
  38. [38] C.N. Yang and R.L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance. The Physical. Review, t. 96, 1954, p. 191. Zbl06538052MR65437
  39. [39] F. Bopp and R. Haag, Ueber die Moglichkeit von Spinmodellen. Z. Naturforsch., t. 5a, 1950, p. 644. Zbl0040.42503MR43309
  40. [40] L. Schwartz, Théorie des distributions, Hermann, 1966, p. 355. Zbl0149.09501MR209834
  41. [41] J.M. Guelfand et N.Y. Vilenkin, Les Distributions. Dunod, t. 4, 1967, chapitre 4. Zbl0179.18502
  42. [42] B.S. Dewitt, Quantum Theory of Measurement (Preprint), p. 27. 
  43. [43] L.S. Schulman, Relativistic Spin: Tops and Wave Equations (Preprint). MR284135
  44. [44] Pierre Cartier, Processus aléatoires généralisés. Séminaire Bourbaki, mai 1964, p. 272. Zbl0132.12503MR175170
  45. [45] Paul Lévy, Théorie de l'addition des variables aléatoires. Gauthier-Villars, 1954. Zbl0056.35903JFM63.0490.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.