Des ponts

Cécile Dewitt-Morette

Publications Mathématiques de l'IHÉS (1998)

  • Volume: S88, page 53-66
  • ISSN: 0073-8301

How to cite

top

Dewitt-Morette, Cécile. "Des ponts." Publications Mathématiques de l'IHÉS S88 (1998): 53-66. <http://eudml.org/doc/104150>.

@article{Dewitt1998,
author = {Dewitt-Morette, Cécile},
journal = {Publications Mathématiques de l'IHÉS},
language = {fre},
pages = {53-66},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {Des ponts},
url = {http://eudml.org/doc/104150},
volume = {S88},
year = {1998},
}

TY - JOUR
AU - Dewitt-Morette, Cécile
TI - Des ponts
JO - Publications Mathématiques de l'IHÉS
PY - 1998
PB - Institut des Hautes Etudes Scientifiques
VL - S88
SP - 53
EP - 66
LA - fre
UR - http://eudml.org/doc/104150
ER -

References

top
  1. [LS1] L. Schulman , A Path Integral for Spin, Phys. Rev.176 (1968), p. 1558-1569. Cet article est en grande partie la publication de la thèse du Ph. D. de l'auteur . MR237149
  2. [LS2] L. Schulman , Approximate Topology, J. Math. Phys.12 (1971), p. 304-308. Ce titre n'encourage malheureusement pas la lecture de l'article. 
  3. [L-D] M.G.G. Laidlaw and C. Dewitt-Morette , Feynman Functional Integrals for Systems of Indistinguishable Particles, Phys. Rev.D.3 (1971), p. 1375-1378. 
  4. [B-L-S-W] L. Biedenharn , E. Lieb, B. Simon, and F. Wilczek, The Ancestry of the anyon, Phys. Today, p. 90-91 (Aug. 1990). 
  5. [I-S] T.D. Imbo and E.C.G. Sudarshan , Inequivalent Quantizations and Fundamentally Perfect Spaces, Phys. Rev. Lett.60 (1988), p. 481-483. MR925746
  6. [S-I-I] E.C.G. Sudarshan, T.D. Imbo, and C.S. Imbo, Topological and algebraic aspects of quantization : symmetries and statistics, Ann. Inst. Henri Poincaré49 (1988 ), p. 387-396. MR988435
  7. [EC] E. Cartan , La Théorie des Spineurs, Hermann ( 1966 ). Zbl0022.17101
  8. [M-S] J.W. Milnor and J.D. Stasheff, Characteristic classes, Princeton University Press (1974). Zbl0298.57008MR440554
  9. [B-D] J.D. Björken and S.D. Drell, Relativistic Quantum Mechanics (1964), Relativistic Quantum Fields (1965 ) (McGraw-Hill Co, New York). Zbl0184.54201MR187641
  10. [S-W] R.F. Streater and A.S. Wightman, PCT, Spin and Statistics, and all that (W.A. Benyamin, Inc.New York , 1964). Zbl0135.44305MR161603
  11. [A-B-S] M.F. Atiyah, R. Bott, and A. Shapiro, Clifford Modules , Topology , Vol. 3 ( 1964), Suppl. 1, p. 3-38. Zbl0146.19001MR167985
  12. [MK] M. Karoubi , Algèbres de Clifford et K-Théorie, Annales Sci. Éc. Normale, Supp. 4e série 1 (1968), p. 161-270. Zbl0194.24101MR238927
  13. [CB-D] Y Choquet-Bruhat and C. Dewitt-Morette, Analysis, Manifolds and Physics. Part II: 92 Applications, p. 17-27 (North-Holland , Amsterdam, 1980- 1989). Zbl0682.58002MR1016603
  14. [C-D] S. Carlip and C. Dewitt-Morette, Where the sign of the metric makes a difference, Physical Review Letters60 (1988), p. 1599-1601. MR935304
  15. [D-G] C. Dewitt-Morette and S.-Jr Gwo, One Spin group, two Pin groups, dans Symposia Gaussiana, Ed. M. Behara; Series AMathematics and Theoretical Physics, Ed. R.G. Lintz, p. 341-382 (Institutum Gaussianum, P.O. Box 1113, Station A, Toronto, ON M5W 1 G6, Canada, 1990). MR1138238
  16. [D-D] C. Dewitt-Morette and B. Dewitt, The Pin Groups in Physics, Physical ReviewD41 (1990), p.1901-1907. MR1048887
  17. [D-G-K] C. Dewitt-Morette , S. -Jr Gwo, and E. Kramer, Spin or Pin?, manuscript, http://godel.ph.utexas.edu/Center/Papers.html ( 1993 ). 
  18. [FD] FJ. Dyson , Feynman at Cornell, Physics To-Day42 (1949), p. 36. 
  19. [CM] C. Morette , On the Definition and Approximation of Feynman's Path Integrals, Phys. Rev.81 (1951), p. 848-852. Zbl0042.45506MR41009
  20. [WP] W. Pauli , Ausgewählte Kapitel aus der Feldquantisierung (ausgearbeitet von U. Hochstrasser und M.R. Schafroth, ETH1950/1951. 
  21. [BD] B.S. Dewitt , Dynamical Theory in Curved Spaces. I. A review of the Classical and Quantum Action Principles, Rev. Mod. Phys.29, p. 377-397 (1957).Eq. (7.8) est la forme covariante de l'équation (172) de Pauli. Cet article mentionne, à tort, que l'approche de Pauli à la théorie de Feynman a pour base le travail de Van Vleck. En fait, le point de départ du travail de Pauli (son eq. 172) est l'équation obtenue par Morette et Van Hove. Zbl0118.23301MR95691
  22. [CD] C. Dewitt , L'intégrale fonctionnelle de Feynmann. Une introduction , Ann. Inst. Henri PoincaréXI, p. 153-206 (1969). 
  23. [NB] N. Bourbaki , Integration, Chapitre IX (Intégration sur les espaces topologiques séparés ) Hermann, Paris ( 1969). Zbl0189.14201MR276436
  24. [D-E-N-S] C. Dewitt-Morette, K.D. Elworthy, B.L. Nelson, and G.S. Sammelman, A stochastic scheme for constructing solutions of the Schrôdinger equations, Ann. Inst. Henri PoincaréXXXII, Section A, p. 327-341 (1980). Zbl0446.60045MR594632
  25. [C-D] P. Cartier and C. Dewitt-Morette, A new perspective on functional integration, J. Math. Phys.36(1995), p. 2237-2312. Zbl0853.58023MR1329253
  26. [C-S] Ph. Choquart and F. Steiner, The story of Van Vleck's and Morette-Van Hove's determinants, Helv. Phys. Acta, 69 (1996), p. 637-654. Zbl0867.58078
  27. [AM] A. Mostafazadeh , Scalar curvature factor in the Schrôdinger equation and scattering on a curved surface, Phys. Rev.A54 (1996), p. 1165-1170. MR1404476

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.