A class of solvable Lie groups and their relation to the canonical formalism

Hans Tilgner

Annales de l'I.H.P. Physique théorique (1970)

  • Volume: 13, Issue: 2, page 103-127
  • ISSN: 0246-0211

How to cite

top

Tilgner, Hans. "A class of solvable Lie groups and their relation to the canonical formalism." Annales de l'I.H.P. Physique théorique 13.2 (1970): 103-127. <http://eudml.org/doc/75669>.

@article{Tilgner1970,
author = {Tilgner, Hans},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {103-127},
publisher = {Gauthier-Villars},
title = {A class of solvable Lie groups and their relation to the canonical formalism},
url = {http://eudml.org/doc/75669},
volume = {13},
year = {1970},
}

TY - JOUR
AU - Tilgner, Hans
TI - A class of solvable Lie groups and their relation to the canonical formalism
JO - Annales de l'I.H.P. Physique théorique
PY - 1970
PB - Gauthier-Villars
VL - 13
IS - 2
SP - 103
EP - 127
LA - eng
UR - http://eudml.org/doc/75669
ER -

References

top
  1. [1] H.D. Döbner et O. Melsheimer, Limitable Dynamical Groups in Quantum Mechanics. I. General Theory and a Spinless Model. J. Math. Phys., t. 9, 1968, p. 1638- 1656. Zbl0162.58702MR237145
  2. H.D. Döbner et T. Palev, To appear. 
  3. [2] D. Kastler, C*-Algebras of a Free Boson Field. Commun. Math. Phys., t. 1, 1965, p. 14-48. Zbl0137.45601MR193983
  4. [3] M. Köcher, Jordan Algebras and their Applications. University of Minnesota, Minneapolis, 1962. Zbl0128.03101
  5. [4] S. Helgason, Differential Geometry and Symmetric Spaces. Academic Press, N. Y., 1962. Zbl0111.18101MR145455
  6. [5] O. Loos, Symmetric Spaces. I. Benjamin, N. Y., 1969. Zbl0175.48601
  7. [6] J. Williamson, The Exponential Representation of Canonical Matrices. Am. J. Math., t. 61, 1939, p. 897-911. Zbl0022.10007MR220
  8. [7] L. Michel, Invariance in Quantum Mechanics and Group Extensions in Gürsey (ed.) : Group Theoretical Concepts and Methods in Elementary Particle Physics. Gordon and Breach, N. Y., 1964. Zbl0151.34305MR171551
  9. [8] R.F. Streater, The Representations of the Oscillator Group. Commun. Math. Phys., t. 4, 1967, p. 217-236. Zbl0155.32503MR207908
  10. [9] N. Jacobson, Lie Algebras. Interscience, N. Y., 1961. Zbl0121.27504MR143793
  11. [10] D. Simms, Lie Groups in Quantum Mechanics. Springer, Lecture, Notes in Mathematics, 52, Berlin, 1968. Zbl0161.24002
  12. [11] Séminaire Sophus Lie, E. N. S., 1954. Théorie des Algèbres de Lie, Topologie des Groupes de Lie. 
  13. [12] I. Segal, Quantized Differential Forms. Topology, t. 7, 1968, p. 147-172. Zbl0162.40602MR232790
  14. [13] S. Lang, Algebra. Addison-Wesley, Reading, Mass., 1965. Zbl0193.34701MR197234
  15. [14] Duimio et Zambotti, Dynamical Group of the Anisotropic Harmonic Oscillator. Nuovo Cimento, t. 43 A, 1966, p. 1203-1207. 
  16. [15] S.S. Sannikov, Square Root Extraction for Anticommuting Spinors. Soviet. Math. Dokl., t. 8, 1967, p. 32-34. Zbl0244.20051
  17. [16] R. Hermann, Lie Groups for Physicists. Benjamin, N. Y., 1966. Zbl0135.06901MR213463
  18. [17] C. Chevalley, Theory of Lie Groups. I. Princeton, 1964. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.