A class of solvable Lie groups and their relation to the canonical formalism
Annales de l'I.H.P. Physique théorique (1970)
- Volume: 13, Issue: 2, page 103-127
- ISSN: 0246-0211
Access Full Article
topHow to cite
topTilgner, Hans. "A class of solvable Lie groups and their relation to the canonical formalism." Annales de l'I.H.P. Physique théorique 13.2 (1970): 103-127. <http://eudml.org/doc/75669>.
@article{Tilgner1970,
author = {Tilgner, Hans},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {103-127},
publisher = {Gauthier-Villars},
title = {A class of solvable Lie groups and their relation to the canonical formalism},
url = {http://eudml.org/doc/75669},
volume = {13},
year = {1970},
}
TY - JOUR
AU - Tilgner, Hans
TI - A class of solvable Lie groups and their relation to the canonical formalism
JO - Annales de l'I.H.P. Physique théorique
PY - 1970
PB - Gauthier-Villars
VL - 13
IS - 2
SP - 103
EP - 127
LA - eng
UR - http://eudml.org/doc/75669
ER -
References
top- [1] H.D. Döbner et O. Melsheimer, Limitable Dynamical Groups in Quantum Mechanics. I. General Theory and a Spinless Model. J. Math. Phys., t. 9, 1968, p. 1638- 1656. Zbl0162.58702MR237145
- H.D. Döbner et T. Palev, To appear.
- [2] D. Kastler, C*-Algebras of a Free Boson Field. Commun. Math. Phys., t. 1, 1965, p. 14-48. Zbl0137.45601MR193983
- [3] M. Köcher, Jordan Algebras and their Applications. University of Minnesota, Minneapolis, 1962. Zbl0128.03101
- [4] S. Helgason, Differential Geometry and Symmetric Spaces. Academic Press, N. Y., 1962. Zbl0111.18101MR145455
- [5] O. Loos, Symmetric Spaces. I. Benjamin, N. Y., 1969. Zbl0175.48601
- [6] J. Williamson, The Exponential Representation of Canonical Matrices. Am. J. Math., t. 61, 1939, p. 897-911. Zbl0022.10007MR220
- [7] L. Michel, Invariance in Quantum Mechanics and Group Extensions in Gürsey (ed.) : Group Theoretical Concepts and Methods in Elementary Particle Physics. Gordon and Breach, N. Y., 1964. Zbl0151.34305MR171551
- [8] R.F. Streater, The Representations of the Oscillator Group. Commun. Math. Phys., t. 4, 1967, p. 217-236. Zbl0155.32503MR207908
- [9] N. Jacobson, Lie Algebras. Interscience, N. Y., 1961. Zbl0121.27504MR143793
- [10] D. Simms, Lie Groups in Quantum Mechanics. Springer, Lecture, Notes in Mathematics, 52, Berlin, 1968. Zbl0161.24002
- [11] Séminaire Sophus Lie, E. N. S., 1954. Théorie des Algèbres de Lie, Topologie des Groupes de Lie.
- [12] I. Segal, Quantized Differential Forms. Topology, t. 7, 1968, p. 147-172. Zbl0162.40602MR232790
- [13] S. Lang, Algebra. Addison-Wesley, Reading, Mass., 1965. Zbl0193.34701MR197234
- [14] Duimio et Zambotti, Dynamical Group of the Anisotropic Harmonic Oscillator. Nuovo Cimento, t. 43 A, 1966, p. 1203-1207.
- [15] S.S. Sannikov, Square Root Extraction for Anticommuting Spinors. Soviet. Math. Dokl., t. 8, 1967, p. 32-34. Zbl0244.20051
- [16] R. Hermann, Lie Groups for Physicists. Benjamin, N. Y., 1966. Zbl0135.06901MR213463
- [17] C. Chevalley, Theory of Lie Groups. I. Princeton, 1964.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.