A class of Lie and Jordan algebras realized by means of the canonical commutation relations
Annales de l'I.H.P. Physique théorique (1971)
- Volume: 14, Issue: 2, page 179-188
- ISSN: 0246-0211
Access Full Article
topHow to cite
topTilgner, Hans. "A class of Lie and Jordan algebras realized by means of the canonical commutation relations." Annales de l'I.H.P. Physique théorique 14.2 (1971): 179-188. <http://eudml.org/doc/75693>.
@article{Tilgner1971,
author = {Tilgner, Hans},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {179-188},
publisher = {Gauthier-Villars},
title = {A class of Lie and Jordan algebras realized by means of the canonical commutation relations},
url = {http://eudml.org/doc/75693},
volume = {14},
year = {1971},
}
TY - JOUR
AU - Tilgner, Hans
TI - A class of Lie and Jordan algebras realized by means of the canonical commutation relations
JO - Annales de l'I.H.P. Physique théorique
PY - 1971
PB - Gauthier-Villars
VL - 14
IS - 2
SP - 179
EP - 188
LA - eng
UR - http://eudml.org/doc/75693
ER -
References
top- [1] H. Tilgner, A class of solvable Lie groups and their relation to the canonical formalism. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. MR277192
- [2] H. Tilgner, A spectrum generating nilpotent group for the relativistic free particle. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. MR286389
- [3] I. Segal, Quantized differential forms. Topology, t. 7, 1968, p. 147-172. Zbl0162.40602MR232790
- [4] J. Williamson, The exponential representation of canonical matrices. Am. J. Math., t. 61, 1939, p. 897-911. Zbl0022.10007MR220
- [5] M. Koecher, Jordan algebras and their applications. University of Minnesota notes, Minneapolis, 1962. Zbl0128.03101
- [6] M. Koecher, Gruppen und Lie-Algebren von rationalen Funktionen. Math. Z., t. 109, 1969, p. 349-392. Zbl0181.04503MR251092
- [7] M. Koecher, An elementary approach to bounded symmetric domains. Rice University, Houston, Texas, 1969. Zbl0217.10901MR261032
- [8] J. Schwinger, On angular momentum, In Quantum theory of angular momentum. Edited by L. C. Biedenharn, H. van Dam, Academic Press, New York, 1965. MR198829
- [9] C.P. Enz, Representation of group generators by boson or fermion operators. Application to spin perturbation. Helv. Phys. Acta, t. 39, 1966, p. 463-465.
- [10] H.D. Döbner and T. Palev, Realizations of Lie algebras by rational functions of canonical variables. In « Proceedings of the IX. Internationale Universitätswochen für Kernphysik, 1970 in Schladming, Austria ». SpringerWien, to appear, 1970.
- [11] O. Loos, Symmetric spaces, I : General theory. BenjaminNew York, 1969. Zbl0175.48601MR239005
- [12] O. Loos, Symmetric spaces, II : Compact spaces and classification. Benjamin, New York, 1969. Zbl0175.48601MR239006
- [13] S. Lang, Algebra. Addison-Wesley, Reading Mass, 1965. Zbl0193.34701MR197234
- [14] C. Chevalley, The construction and study of certain important algebras. The International Society of Japan, Tokio, 1955. Zbl0065.01901MR72867
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.