A class of Lie and Jordan algebras realized by means of the canonical commutation relations

Hans Tilgner

Annales de l'I.H.P. Physique théorique (1971)

  • Volume: 14, Issue: 2, page 179-188
  • ISSN: 0246-0211

How to cite

top

Tilgner, Hans. "A class of Lie and Jordan algebras realized by means of the canonical commutation relations." Annales de l'I.H.P. Physique théorique 14.2 (1971): 179-188. <http://eudml.org/doc/75693>.

@article{Tilgner1971,
author = {Tilgner, Hans},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {179-188},
publisher = {Gauthier-Villars},
title = {A class of Lie and Jordan algebras realized by means of the canonical commutation relations},
url = {http://eudml.org/doc/75693},
volume = {14},
year = {1971},
}

TY - JOUR
AU - Tilgner, Hans
TI - A class of Lie and Jordan algebras realized by means of the canonical commutation relations
JO - Annales de l'I.H.P. Physique théorique
PY - 1971
PB - Gauthier-Villars
VL - 14
IS - 2
SP - 179
EP - 188
LA - eng
UR - http://eudml.org/doc/75693
ER -

References

top
  1. [1] H. Tilgner, A class of solvable Lie groups and their relation to the canonical formalism. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. MR277192
  2. [2] H. Tilgner, A spectrum generating nilpotent group for the relativistic free particle. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. MR286389
  3. [3] I. Segal, Quantized differential forms. Topology, t. 7, 1968, p. 147-172. Zbl0162.40602MR232790
  4. [4] J. Williamson, The exponential representation of canonical matrices. Am. J. Math., t. 61, 1939, p. 897-911. Zbl0022.10007MR220
  5. [5] M. Koecher, Jordan algebras and their applications. University of Minnesota notes, Minneapolis, 1962. Zbl0128.03101
  6. [6] M. Koecher, Gruppen und Lie-Algebren von rationalen Funktionen. Math. Z., t. 109, 1969, p. 349-392. Zbl0181.04503MR251092
  7. [7] M. Koecher, An elementary approach to bounded symmetric domains. Rice University, Houston, Texas, 1969. Zbl0217.10901MR261032
  8. [8] J. Schwinger, On angular momentum, In Quantum theory of angular momentum. Edited by L. C. Biedenharn, H. van Dam, Academic Press, New York, 1965. MR198829
  9. [9] C.P. Enz, Representation of group generators by boson or fermion operators. Application to spin perturbation. Helv. Phys. Acta, t. 39, 1966, p. 463-465. 
  10. [10] H.D. Döbner and T. Palev, Realizations of Lie algebras by rational functions of canonical variables. In « Proceedings of the IX. Internationale Universitätswochen für Kernphysik, 1970 in Schladming, Austria ». SpringerWien, to appear, 1970. 
  11. [11] O. Loos, Symmetric spaces, I : General theory. BenjaminNew York, 1969. Zbl0175.48601MR239005
  12. [12] O. Loos, Symmetric spaces, II : Compact spaces and classification. Benjamin, New York, 1969. Zbl0175.48601MR239006
  13. [13] S. Lang, Algebra. Addison-Wesley, Reading Mass, 1965. Zbl0193.34701MR197234
  14. [14] C. Chevalley, The construction and study of certain important algebras. The International Society of Japan, Tokio, 1955. Zbl0065.01901MR72867

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.