Sets of simple observables in the operational approach to quantum theory

C. M. Edwards

Annales de l'I.H.P. Physique théorique (1971)

  • Volume: 15, Issue: 1, page 1-14
  • ISSN: 0246-0211

How to cite

top

Edwards, C. M.. "Sets of simple observables in the operational approach to quantum theory." Annales de l'I.H.P. Physique théorique 15.1 (1971): 1-14. <http://eudml.org/doc/75705>.

@article{Edwards1971,
author = {Edwards, C. M.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Gauthier-Villars},
title = {Sets of simple observables in the operational approach to quantum theory},
url = {http://eudml.org/doc/75705},
volume = {15},
year = {1971},
}

TY - JOUR
AU - Edwards, C. M.
TI - Sets of simple observables in the operational approach to quantum theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1971
PB - Gauthier-Villars
VL - 15
IS - 1
SP - 1
EP - 14
LA - eng
UR - http://eudml.org/doc/75705
ER -

References

top
  1. [1] E.B. Davies, On the Borel structure of C*-algebras. Commun. Math. Phys., t. 8, 1968, p. 147-164. Zbl0153.44701MR231209
  2. [2] E.B. Davies and J.T. Lewis, An operational approach to quantum probability. Commun. Math. Phys., t. 17, 1970, p. 239-260. Zbl0194.58304MR263379
  3. [3] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. Zbl0152.32902MR171173
  4. [4] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969. Zbl0175.43801
  5. [5] C.M. Edwards, The operational approach to quantum probability, I. Commun. Math. Phys., t. 16, 1970, p. 207-230. Zbl0187.25601MR273943
  6. [6] C.M. Edwards, Classes of operations in quantum theory. Commun. Math. Phys., t. 20, 1971, p. 26-56. Zbl0203.57001MR275799
  7. [7] C.M. Edwards and M.A. Gerzon, Monotone convergence in partially ordered vector spaces. Ann. Inst. Henri Poincaré, t. 12 A, 1970, p. 323-328. Zbl0197.38201MR268644
  8. [8] D.A. Edwards, On the homeomorphic affine embedding of a locally compact cone into a Banach dual space endowed with the vague topology. Proc. London Math. Soc., t. 14, 1964, p. 399-414. Zbl0205.12202MR169019
  9. [9] E.G. Effros, Order ideals in a C*-algebra and its dual. Duke Math. J., t. 30, 1963, p. 391-412. Zbl0117.09703MR151864
  10. [10] E.T. Kehlet, On the monotone sequential closure of a C*-algebra. Math. Scand., t. 25, 1969, p. 59-70. Zbl0198.18003MR283579
  11. [11] J. Gunson, On the algebraic structure of quantum mechanics. Commun. Math. Phys., t. 6, 1967, p. 262-285. Zbl0171.46804MR230525
  12. [12] R. Haag and D. Kastler, An algebraic approach to quantum field theory. J. Math. Phys., t. 5, 1964, p. 846-861. Zbl0139.46003MR165864
  13. [13] V.L. Klee, Convex sets in linear spaces. Duke Math. J., t. 18, 1951, p. 443-466. Zbl0042.36201MR44014
  14. [14] V.L. Klee, Separation properties of convex cones. Proc. Am. Math., t. 6, 1955, p. 313- 318. Zbl0064.35602MR68113
  15. [15] G.K. Pederson, On the weak and monotone σ-closures of C*-algebras. Commun. Math. Phys., t. 11, 1969, p. 221-226. Zbl0167.43401MR240641
  16. [16] R.T. Prosser, On the ideal structure of operator algebras. Mém. Am. Math. Soc., t. 45, 1963. Zbl0125.06703MR151863

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.