Sets of simple observables in the operational approach to quantum theory
Annales de l'I.H.P. Physique théorique (1971)
- Volume: 15, Issue: 1, page 1-14
- ISSN: 0246-0211
Access Full Article
topHow to cite
topEdwards, C. M.. "Sets of simple observables in the operational approach to quantum theory." Annales de l'I.H.P. Physique théorique 15.1 (1971): 1-14. <http://eudml.org/doc/75705>.
@article{Edwards1971,
author = {Edwards, C. M.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Gauthier-Villars},
title = {Sets of simple observables in the operational approach to quantum theory},
url = {http://eudml.org/doc/75705},
volume = {15},
year = {1971},
}
TY - JOUR
AU - Edwards, C. M.
TI - Sets of simple observables in the operational approach to quantum theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1971
PB - Gauthier-Villars
VL - 15
IS - 1
SP - 1
EP - 14
LA - eng
UR - http://eudml.org/doc/75705
ER -
References
top- [1] E.B. Davies, On the Borel structure of C*-algebras. Commun. Math. Phys., t. 8, 1968, p. 147-164. Zbl0153.44701MR231209
- [2] E.B. Davies and J.T. Lewis, An operational approach to quantum probability. Commun. Math. Phys., t. 17, 1970, p. 239-260. Zbl0194.58304MR263379
- [3] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. Zbl0152.32902MR171173
- [4] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969. Zbl0175.43801
- [5] C.M. Edwards, The operational approach to quantum probability, I. Commun. Math. Phys., t. 16, 1970, p. 207-230. Zbl0187.25601MR273943
- [6] C.M. Edwards, Classes of operations in quantum theory. Commun. Math. Phys., t. 20, 1971, p. 26-56. Zbl0203.57001MR275799
- [7] C.M. Edwards and M.A. Gerzon, Monotone convergence in partially ordered vector spaces. Ann. Inst. Henri Poincaré, t. 12 A, 1970, p. 323-328. Zbl0197.38201MR268644
- [8] D.A. Edwards, On the homeomorphic affine embedding of a locally compact cone into a Banach dual space endowed with the vague topology. Proc. London Math. Soc., t. 14, 1964, p. 399-414. Zbl0205.12202MR169019
- [9] E.G. Effros, Order ideals in a C*-algebra and its dual. Duke Math. J., t. 30, 1963, p. 391-412. Zbl0117.09703MR151864
- [10] E.T. Kehlet, On the monotone sequential closure of a C*-algebra. Math. Scand., t. 25, 1969, p. 59-70. Zbl0198.18003MR283579
- [11] J. Gunson, On the algebraic structure of quantum mechanics. Commun. Math. Phys., t. 6, 1967, p. 262-285. Zbl0171.46804MR230525
- [12] R. Haag and D. Kastler, An algebraic approach to quantum field theory. J. Math. Phys., t. 5, 1964, p. 846-861. Zbl0139.46003MR165864
- [13] V.L. Klee, Convex sets in linear spaces. Duke Math. J., t. 18, 1951, p. 443-466. Zbl0042.36201MR44014
- [14] V.L. Klee, Separation properties of convex cones. Proc. Am. Math., t. 6, 1955, p. 313- 318. Zbl0064.35602MR68113
- [15] G.K. Pederson, On the weak and monotone σ-closures of C*-algebras. Commun. Math. Phys., t. 11, 1969, p. 221-226. Zbl0167.43401MR240641
- [16] R.T. Prosser, On the ideal structure of operator algebras. Mém. Am. Math. Soc., t. 45, 1963. Zbl0125.06703MR151863
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.