Physical states on quantum logics. I

J. Gunson

Annales de l'I.H.P. Physique théorique (1972)

  • Volume: 17, Issue: 4, page 295-311
  • ISSN: 0246-0211

How to cite

top

Gunson, J.. "Physical states on quantum logics. I." Annales de l'I.H.P. Physique théorique 17.4 (1972): 295-311. <http://eudml.org/doc/75759>.

@article{Gunson1972,
author = {Gunson, J.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {4},
pages = {295-311},
publisher = {Gauthier-Villars},
title = {Physical states on quantum logics. I},
url = {http://eudml.org/doc/75759},
volume = {17},
year = {1972},
}

TY - JOUR
AU - Gunson, J.
TI - Physical states on quantum logics. I
JO - Annales de l'I.H.P. Physique théorique
PY - 1972
PB - Gauthier-Villars
VL - 17
IS - 4
SP - 295
EP - 311
LA - eng
UR - http://eudml.org/doc/75759
ER -

References

top
  1. [1] G. Birkhoff and J. Von Neumann, The logic of quantum mechanics (Ann. Math., t. 37, 1936, p. 823-843). Zbl0015.14603MR1503312JFM62.1061.04
  2. [2] G.W. Mackey, The mathematical foundations of quantum mechanics, Benjamin, New York, 1963. Zbl0114.44002
  3. [3] J. Gunson, On the algebraic structure of quantum mechanics (Commun. Math. Phys., t. 6, 1967, p. 262-285). Zbl0171.46804MR230525
  4. [4] V.S. Varadarajan, Geometry of quantum theory, vol. I, Van Nostrand, Princeton, 1968. Zbl0155.56802MR471674
  5. [5] A.M. Gleason, Measures on the closed subspaces of a Hilbert space (J. Math. Mech., t. 6, 1957, p. 885-894). Zbl0078.28803MR96113
  6. [6] E.B. Davies, private communication. 
  7. [7] J.F. Aarnes, Quasi-states on C*-algebras (Trans. Amer. Math. Soc., t. 149, 1970, p. 601-625). Zbl0212.15403MR282602
  8. [8] F.J. Murray and J. Von Neumann, On rings of operators, II (Trans. Amer. Math. Soc., t. 41, 1937, p. 208-248). Zbl0017.36001MR1501899JFM63.1008.03
  9. [9] J.E. Turner, Ph. D. Thesis, University of Birmingham, 1968. 
  10. [10] Y.C. Wong, Isoclinic n-planes in Euclidean 2n-space, Clifford parallels in elliptic (2n-1)-space and the Hurwitz matrix equations (Mem. Amer. Math. Soc., No. 41, 1961). Zbl0124.13401MR145437
  11. [11] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris, 1957, p. 229. Zbl0088.32304MR94722
  12. [12] See ref. [11], p. 3. 
  13. [13] See ref. [11], p. 62. 
  14. [14] See ref. [11], p. 288. 
  15. [15] K. Yosida, Functional analysis, Springer, Berlin, 1965, p. 69. Zbl0126.11504MR180824
  16. [16] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1966, p. 432. Zbl0148.12601MR407617
  17. [17] T.H. Hildebrandt, Introduction to the theory of integration, Academic Press, New York, 1963, ch. II, theorem 15.3. Zbl0112.28302MR154957
  18. [18] J. Glimm, On a certain class of operator algebras (Trans. Amer. Math. Soc., t. 95. 1960, p. 318-340). Zbl0094.09701MR112057

NotesEmbed ?

top

You must be logged in to post comments.