La théorie des catastrophes. II. Dynamiques gradientes à une variable d'état

Jean-Guy Dubois; Jean-Paul Dufour

Annales de l'I.H.P. Physique théorique (1974)

  • Volume: 20, Issue: 2, page 135-151
  • ISSN: 0246-0211

How to cite

top

Dubois, Jean-Guy, and Dufour, Jean-Paul. "La théorie des catastrophes. II. Dynamiques gradientes à une variable d'état." Annales de l'I.H.P. Physique théorique 20.2 (1974): 135-151. <http://eudml.org/doc/75800>.

@article{Dubois1974,
author = {Dubois, Jean-Guy, Dufour, Jean-Paul},
journal = {Annales de l'I.H.P. Physique théorique},
language = {fre},
number = {2},
pages = {135-151},
publisher = {Gauthier-Villars},
title = {La théorie des catastrophes. II. Dynamiques gradientes à une variable d'état},
url = {http://eudml.org/doc/75800},
volume = {20},
year = {1974},
}

TY - JOUR
AU - Dubois, Jean-Guy
AU - Dufour, Jean-Paul
TI - La théorie des catastrophes. II. Dynamiques gradientes à une variable d'état
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 20
IS - 2
SP - 135
EP - 151
LA - fre
UR - http://eudml.org/doc/75800
ER -

References

top
  1. [1] R. Thom, Stabilité structurelle et morphogénèse (Benjamin, Reading, Mass., 1972). Zbl0294.92001MR488155
  2. [2] E.C. Zeeman, Applications of Catastrophe Theory, Tokyo International Conference on Manifolds, Avril 1973 (à paraître). Zbl0311.58004MR368076
  3. [3] R. Thom, Topological Models in Biology, Topology, vol. 8, 1969, p. 313. Zbl0165.23301MR245318
  4. [4] E.C. Zeeman, Differential Equations of the Heartbeat and Nerve Impulse, dans Towards a Theoretical Biology, 4. Essays, ed. C. H. Waddington (EdinburghUniversity Press, 1972), p. 8. Zbl0289.92004MR342207
  5. [5] R. Thom, Topologie et linguistique, dansEssays on Topology and Related Topics, Mémoires dédiés à Georges de Rham (Springer-Verlag, Berlin, 1970). Zbl0211.51801MR495268
  6. [6] J.-G. Dubois et J.-P. Dufour, La théorie des catastrophes. I. La machine à catastrophes. , Ann. Inst. Henri Poincaré, Vol. XX, n° 2, 1974, p. 113. Zbl0293.58004MR375376
  7. [7] R. Thom, Phase Transitions as Catastrophes, dans Statistical Mechanics, New Concepts, New Problems, New Applications, ed. S. A. Rice, K. F. Freed, J. C. Light (University of Chicago Press, 1972), p. 93. MR343818
  8. [8] D. Fowler, The Riemann-Hugoniot Catastrophe and Van der Walls' Equation, dans Towards a Theoretical Biology 4. Essays, ed. C. H. Waddington (EdinburghUniversity Press, 1972), p. 1. 
  9. [9] H. Whitney, On Singularities of Mappings of Euclidean Spaces. I. Mappings of the Plane into the Plane, Ann. of Math., vol. 62, no. 3, 1955, p. 374. Zbl0068.37101MR73980
  10. [10] C.T.C. Wall, Introduction to the Preparation Theorem, dans Proceedings of Liverpool Singularities. Symposium I, Lecture Notes in Mathematics, vol. 192 (Springer–Verlag, Berlin, 1971), p. 90. Zbl0211.39202MR307257
  11. [11] S. Lang, Analysis. II (Addison-Wesley, Reading, Mass., 1969). Zbl0176.00504
  12. [12] B. Morin, Formes canoniques des singularités d'une application différentiable, C. R. Acad. Sci. (Paris), t. 260, 1965, p. 5662. Zbl0178.26801MR180982
  13. [13] A.E.R. Woodcock and T. Poston, The Geometry of the Elementary Catastrophes (à paraître dans la collection Lecture Notes in Mathematics, Springer-Verlag, Berlin). Zbl0279.58004MR458470
  14. [14] J.N. Mather, Stability of C∞ Mappings. IV. Classification of Stable Germs by R-Algebras. Publ. Math. I. H. E. S., no. 37, 1970, p. 523. Zbl0202.55102MR275460
  15. [15] R. Thom, Modèles mathématiques de la morphogénèse, chapitre 3, Théorie du déploiement universel(I. H. E. S., Bures-sur-Yvette, multigr. 1971). Zbl0347.58003MR467804
  16. [16] F. Sergeraert, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. scient. Ec. Norm. Sup., 4e série, t. 5, 1972, p. 599. Zbl0246.58006MR418140

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.